

Test baryon junction in isobaric collisions of $\mathrm{Ru}+\mathrm{Ru}$ and $\mathrm{Zr}+\mathrm{Zr}$ at $\sqrt{s_{\mathrm{NN}}}=200 \mathrm{GeV}$ with the STAR experiment

Yang Li, for the STAR collaboration
University of Science and Technology of China
Brookhaven National Laboratory

Yang Li
In part supported by
U.S. DEPARTMENT OF

ENERGY

Office of Science

Brookhaven
National Laboratory

Motivation

- Theory proposed that baryon number (B) could be carried by a non-perturbative Y-shaped topology, called the baryon junction, while charges (Q) are carried by quarks.

D. Kharzeev, Phys. Lett. B 378, 238-246 (1996)

\circ One can compare the relative change in net-charge numbers in $\mathrm{Ru}+\mathrm{Ru}$ and $\mathrm{Zr}+\mathrm{Zr}$ collisions to test the baryon junction hypothesis.

- If baryon number carried by junctions (easier to stop): $\Delta Q<B * \Delta \mathrm{Z} / \mathrm{A}$
\circ Charge stopping difference can be precisely measured using double ratios.
- Double ratio of pions:

$$
\begin{array}{r}
R 2_{\pi}=\left(N_{\pi^{+}}^{\mathrm{Ru}} / N_{\pi^{-}}^{\mathrm{Ru}}\right) /\left(N_{\pi^{+}}^{\mathrm{Zr}} / N_{\pi^{-}}^{\mathrm{Zr}}\right) \\
\simeq 1+\left(N_{\pi^{+}}^{\mathrm{Zu}} / N_{\pi^{-}}^{\mathrm{Ru}}\right)-\left(N_{\pi^{+}}^{\mathrm{Zr}} / N_{\pi^{-}}^{\mathrm{Zr}}\right),
\end{array}
$$

- The charge difference at midrapidity of two isobar systems:

$$
\begin{gathered}
\Delta Q=N_{\pi}\left[\left(R 2_{\pi}-1\right)+\frac{N_{K}}{N_{\pi}}\left(R 2_{K}-1\right)+\frac{N_{p}}{N_{\pi}}\left(R 2_{p}-1\right)\right] \\
\text { J. D. Brandenburg, N. Lewis, P. Tribedy, and Z. Xu, (2022), } 2205.05685
\end{gathered}
$$

Particle identification

- Particle identification at high momentum region is challenging when using $\mathrm{dE} / \mathrm{dx}$ or m^{2} alone.
- PID capability could be improved if TPC and TOF information are combined.

Particle ratios between $\mathrm{Ru}+\mathrm{Ru}$ and $\mathrm{Zr}+\mathrm{Zr}$ collisions

o More particle production in $\mathrm{Ru}+\mathrm{Ru}$ than $\mathrm{Zr}+\mathrm{Zr}$ at same centrality.

- Similar centrality dependence for each particle species.
- For a given centrality, the particle ratio increases more rapidly with increasing particle mass, which could be driven by different radial flows in the two collision systems.

Double ratios between $\mathrm{Ru}+\mathrm{Ru}$ and $\mathrm{Zr}+\mathrm{Zr}$ collisions

Outlook:

- Measure net-baryon number in isobar collisions for testing baryon junction hypothesis.

