

Determining the Longitudinal Double-Spin Asymmetry (A_{LL}) in π⁰ Production from 2013 STAR Endcap Calorimeter Data

Sam Starkenburg Valparaiso University For the STAR Collaboration Supported in part by

Office of Science

Background - Proton Spin

RHIC

Only collider that can collide spin-polarized protons Average polarization: 50-60% Relativistic Heavy Ion Collider

Located at Brookhaven National Lab in New York

Protons are collided with a center-of-mass energy of 200 and 500/510 GeV

4

Asymmetry (A₁₁)

- Using the number of the π^0 particles and the known polarization of the beams, we can calculate the asymmetry of π^0 production from different spin states of the protons
 - The asymmetry formula:
 - P_b and P_y are the polarization of the blue and yellow beams
 - N⁺⁺ and N⁺⁻ are the number of π^0 in the respective spin state
 - · R is the relative luminosity ratio
 - If $A_{\rm LL}$ is nonzero, then there is a sensitivity to $\pi^{\rm O}$ production from spin of the proton

$$A_{LL} = \frac{N^{++} - RN^{+-}}{P_b P_y (N^{++} + RN^{+-})}$$

Asymmetry is related to the gluon contribution to the spin of the proton

Data Quality Assurance (QA)

- To make sure we are using the best data available, we use quality assurance tests at the run and fill level
- A fill is a set of data collected from when the beam is injected to when it is dumped
- My research is π^0 Fill Level QA for the 2013 dataset ($\sqrt{s} = 510$ GeV)
- For fill level QA, we investigate:
 - Invariant mass
 - Signal to background ratio
 - \circ Width of π^0 signal

Fitting the π^0 Histogram

 This is a histogram of the invariant mass of all two photon combinations in a fill

• Histogram is fit using:
• A Skewed Gaussian function to
represent the signal (
$$\pi^0$$
 particles):
 $f(x) = p_0 * exp(-0.5(\frac{x-p_1}{p_2(1+p_3(x-p_1)})^2)$

• A Chebyshev Polynomial to represent the background:

$$f(x) = p_9 * (p_4 T_0 + p_5 T_1 + p_6 T_2 + p_7 T_3 + p_8 T_4)$$

• We can find number of π°s by integrating the signal function

$\pi^{\rm O}$ Fit Parameters

Measured mass

 π^0 invariant mass: 0.135 GeV/c^2

 Skewed Gaussian function to represent the signal (π^o particles):

$$f(x) = p_0 * exp(-0.5(\frac{x - p_1}{p_2(1 + p_3(x - p_1))})^2)$$

• Chebyshev Polynomial to represent the background:

$$f(x) = p_9 * (p_4 T_0 + p_5 T_1 + p_6 T_2 + p_7 T_3 + p_8 T_4)$$

 $T_0(x) = 1$ $T_1(x) = x$ $T_2(x) = 2x^2 - 1$ $T_3(x) = 4x^3 - 3x$ $T_4(x) = 8x^4 - 8x^2 + 1$

 Background could also be fit with regular polynomial or "modified planck function"

π^{0} Fill Level Quality Assurance - Invariant Mass

APS April Meeting

π^{0} Fill Level Quality Assurance - Width

Signal Fraction

 Signal fraction is the fraction of signal to signal + background within 2 standard deviations

$$SF = \frac{signal}{signal + background}$$

$\pi^{\rm O}$ Fill Level Quality Assurance - Signal Fraction

APS April Meeting

Summary

- QA testing was done on 2013 data at the fill level for $\pi^{\rm 0}$
- . This data will be used to select good fills for the next step in the analysis of the 2013 data set to determine the $\pi^0 A_{\rm LL}$

Background - Proton Spin

Invariant Mass

• Invariant mass $(M_{\gamma\gamma})$ can be calculated from the energy and position of the photons

Invariant Mass $M_{\gamma\gamma} = (E_1 + E_2) \sqrt{1 - \left(\frac{E_1 - E_2}{E_1 + E_2}\right)^2} \sin\left(\frac{\theta}{2}\right)$

- The software package ROOT will take all of the invariant mass results and make a histogram
- The invariant mass plots help us identify particles and how many there are

 $\pi^{\rm o}$ Mass: 0.135 GeV/c² η Mass: 0.548 GeV/c²

