Determining the Longitudinal

Double-Spin Asymmetry (A_{LL}) in π^{0}

 Production from 2013 STAR Endcap Calorimeter DataSam Starkenburg
Valparaiso University For the STAR Collaboration

Supported in part by

Office of Science

Background - Proton Spin

- Spin is the intrinsic angular momentum of a particle
- The proton has spin $1 / 2 \hbar$
- Quarks are elementary particles which make up composite particles called hadrons (e.g. protons, neutrons, pions, etas)

Gluon orbital
Gluon spin angular momentum

$$
\frac{1}{2} \hbar=\frac{1}{2} \underbrace{\Delta \Sigma}_{\substack{\text { Quark spin } \\ \sim 30 \%}}+\sim_{\substack{\text { Quark orbital } \\ \text { angular momentum }}}^{\Delta \mathrm{G}}+\underbrace{L_{q}}_{L_{q}}+L_{g}
$$

Sea Quarks

- Quark pairs (quarks and
 force

Only collider that can collide spin-polarized protons
Average polarization: 50-60\%

Relativistic

Heavy
Ion
Collider

Located at Brookhaven National Lab in New York

Protons are collided with a center-of-mass energy of 200 and $500 / 510 \mathrm{GeV}$

STAR - Solenoidal Tracker at RHIC

Neutral pion $\left(\pi^{0}\right)$ and eta (η) particles decay rapidly into two photons
π^{0} mean lifetime: $8.5^{*} 10^{-17} \mathrm{~s}$

$$
\begin{aligned}
& \text { Invariant Mass } \\
& M_{\gamma \gamma}=\left(E_{1}+E_{2}\right) \sqrt{1-\left(\frac{E_{1}-E_{2}}{E_{1}+E_{2}}\right)^{2}} \sin \left(\frac{\theta}{2}\right)
\end{aligned}
$$

Asymmetry $\left(\mathrm{A}_{\mathrm{LL}}\right)$

- Using the number of the π^{0} particles and the known polarization of the beams, we can calculate the asymmetry of π^{0} production from different spin states of the protons

$$
A_{L L}=\frac{N^{++}-R N^{+-}}{P_{b} P_{y}\left(N^{++}+R N^{+-}\right)}
$$

- The asymmetry formula:
- P_{b} and P_{y} are the polarization of the blue and yellow beams
- N^{++}and N^{++}are the number of π^{0} in the respective spin state
- R is the relative luminosity ratio
- If $A_{L L}$ is nonzero, then there is a sensitivity to π^{0} production from spin of the proton

Spin is aligned with momentum
$=P \mathbf{P}$

Spin is anti-aligned with momentum

Asymmetry is related to the gluon contribution to the spin of the proton

Data Quality Assurance (QA)

- To make sure we are using the best data available, we use quality assurance tests at the run and fill level
- A fill is a set of data collected from when the beam is injected to when it is dumped
- My research is π^{0} Fill Level QA for the 2013 dataset $(\sqrt{ } s=510 \mathrm{GeV})$
- For fill level QA, we investigate:
- Invariant mass
- Signal to background ratio
- Width of π^{0} signal

Fitting the π^{0} Histogram

- This is a histogram of the invariant mass of all two photon combinations in a fill
- Histogram is fit using:
- A Skewed Gaussian function to represent the signal (π^{0} particles):
$f(x)=p_{0} * \exp \left(-0.5\left(\frac{x-p_{1}}{p_{2}\left(1+p_{3}\left(x-p_{1}\right)\right.}\right)^{2}\right)$
- A Chebyshev Polynomial to represent the background:
$f(x)=p_{9} *\left(p_{4} T_{0}+p_{5} T_{1}+p_{6} T_{2}+p_{7} T_{3}+p_{8} T_{4}\right)$
- We can find number of $\pi^{\circ} s$ by integrating the signal function
π^{0} Fit Parameters

Measured mass
π^{0} invariant mass: $0.135 \mathrm{GeV} / \mathrm{c}^{2}$

- Skewed Gaussian function to
represent the signal (π° particles):

$$
f(x)=p_{0} * \exp \left(-0.5\left(\frac{x-p_{1}}{p_{2}\left(1+p_{3}\left(x-p_{1}\right)\right.}\right)^{2}\right)
$$

- Chebyshev Polynomial to represent the background:

$$
\begin{aligned}
f(x)=p_{9} *\left(p_{4} T_{0}+p_{5} T_{1}\right. & \left.+p_{6} T_{2}+p_{7} T_{3}+p_{8} T_{4}\right) \\
T_{0}(x) & =1 \\
T_{1}(x) & =x \\
T_{2}(x) & =2 x^{2}-1 \\
T_{3}(x) & =4 x^{3}-3 x \\
T_{4}(x) & =8 x^{4}-8 x^{2}+1
\end{aligned}
$$

- Background could also be fit with regular polynomial or "modified planck function"

π^{0} Fill Level Quality Assurance - Invariant Mass

π^{0} Mass vs. Fill Number

π^{0} Fill Level Quality Assurance - Width

π^{0} Width vs. Fill

Signal Fraction

- Signal fraction is the fraction of signal to signal + background within 2 standard deviations

$$
S F=\frac{\text { signal }}{\text { signal }+ \text { background }}
$$

- Typically ~.70-.80

π^{0} Fill Level Quality Assurance - Signal Fraction

Summary

- QA testing was done on 2013 data at the fill level for π^{0}
- This data will be used to select good fills for the next step in the analysis of the 2013 data set to determine the $\pi^{0} \mathrm{~A}_{\mathrm{LL}}$

Background - Proton Spin

- Spin is the intrinsic angular momentum of a particle
- The proton has spin $1 / 2 \hbar$
- Quarks are elementary particles which make up composite particles called hadrons (e.g. protons, neutrons, pions, etas)

Gluon orbital
Gluon spin angular momentum

$$
\frac{1}{2} \hbar=\frac{1}{2} \underbrace{\Delta \Sigma}_{\substack{\text { Quark spin } \\ \sim 30 \%}}+\sim_{\substack{\text { Quark orbital } \\ \text { angular momentum }}}^{\Delta \mathrm{G}}+\underbrace{L_{q}}_{L_{q}}+L_{g}
$$

Sea Quarks

 force

Invariant Mass

- Invariant mass $\left(M_{y Y}\right)$ can be calculated from the energy and position of the photons

$$
\begin{aligned}
& \text { Invariant Mass } \\
& M_{\gamma \gamma}=\left(E_{1}+E_{2}\right) \sqrt{1-\left(\frac{E_{1}-E_{2}}{E_{1}+E_{2}}\right)^{2}} \sin \left(\frac{\theta}{2}\right)
\end{aligned}
$$

- The software package ROOT will take all of the invariant mass results and make a histogram
- The invariant mass plots help us identify particles and how many there are
π^{0} Mass: $0.135 \mathrm{GeV} / \mathrm{c}^{2}$ η Mass: $0.548 \mathrm{GeV} / \mathrm{c}^{2}$

