Transverse Single-Spin Asymmetries for Jet-like events at Forward Rapidities in $p+p$ Collisions at $\sqrt{ } s=500 \mathrm{GeV}$ with the STAR Experiment

Mriganka Mouli Mondal (for STAR Collaboration)
Texas A\&M University

Outline :
\diamond Forward Meson Spectrometer in the STAR experiment
\diamond Transverse Single Spin Asymmetries (TSSA)
\diamond EM-Jets measured from FMS photons
$\diamond A_{N}$ measurements from run-11 at $\sqrt{ } s=500 \mathrm{GeV}$

RHIC : the world's first polarized proton collider

Forward ECALs in STAR

Forward Meson Spectrometer (FMS) :
-- Pb glass EM calorimeter covering $2.5<\eta<4.0$
-- Detect π^{0}, η, direct photons and jet-like events in the kinematic region where asymmetries are known to be large.

TSSA - 2 theoretical frameworks

Spin-dependent transverse momentum dependent (TMD) function S_{T}. $\left(\mathrm{Pxk}_{\mathrm{T}}\right)$
Brodsky, Hwang, Schmidt, 02
Collins, 02, Ji, Belitsky, Yuan, 02

Twist-3 quark-gluon correlations
Efremov \& Teryaev: 1982 \& 1984
Qiu \& Sterman: 1991 \& 1999

Need 2 scales
Q^{2} and p_{\dagger}
Remember $p p:$
most observables one scale
Exception:
DY, W/Z-production

Need only 1 scale Q^{2} or P_{+}

But
should be of reasonable size should be applicable to most pp observables

$$
A_{N}\left(\pi^{0} / \gamma / j e t\right)
$$

$\pi^{0} A_{N}$ Measurements at Forward Rapidity

Inclusive $\boldsymbol{\pi} 0$ production

$$
p_{\uparrow}+p \rightarrow \pi^{0}+X
$$

Transverse Single Spin Asymmetry

$$
\begin{aligned}
& A_{N} \equiv \frac{\sigma^{\uparrow}-\sigma^{\downarrow}}{\sigma^{\uparrow}+\sigma^{\downarrow}} \\
& \mathrm{x}_{\mathrm{F}}=2 \mathrm{p}_{\mathrm{Z}} / \sqrt{ } \mathrm{s}
\end{aligned}
$$

\diamond Rising A_{N} with X_{F}
$\diamond A_{N}$ nearly independent of $V s$
\diamond No evidence of fall in A_{N} with increasing P_{T}

CIPANP 2012,
Steve Heppelmann

Run-2011 data

$\mathrm{p}+\mathrm{p}$ Vs $=500 \mathrm{GeV}$ transverse datasets

Jet algorithm : anti-kt
R-parameter: 0.7
$\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{EM} \text {-eet }}>2.0 \mathrm{GeV} / \mathrm{c}$
FMS photons with $p_{T}>0.001 \mathrm{GeV}$ fed into anti-kt

Leading EM-Jets : Multi-photon Jets with highest energy

EM-Jets used to find asymmetry within
$2.8<\eta^{\text {EM- }}$-et <4.0
40 GeV < Energy ${ }^{\text {EM-Jet }}<100 \mathrm{GeV}$

Structure in EM-Jet p_{T}
-- Acceptance non uniformity in small and large tower boundary
-- Different trigger threshold influence
different p_{T} region

EM-Jet characteristics

No. of photons in leading EM-Jets

W invariant mass 2-photon EM-jets

$d E / d(\Delta R)$ distribution of $E M$-Jets
$\diamond 2$-photon jets are mostly π^{0}
\diamond Events with more than 2 photons show jet-like energy flow

A_{N} from fits

$\diamond A_{N}$ is calculated from $\mathbf{p 0 + p 1} \boldsymbol{\operatorname { c o s }}(\boldsymbol{\phi})$ fits over each fill p0 = relative luminosity, p1 = asymmetry
$\diamond A_{N}$'s are corrected for polarization values from fill to fill
\diamond Weighted A_{N} and $X^{2} /$ NDF are calculated over entire fills
EM-Jet Energy $=55-57.5 \mathrm{GeV}$

For 2-photon isolated π^{0}

Individual point and $x^{2} /$ NDF from averages over ~ 18 fills

A_{N} vs. EM-Jet Energy

π^{0}-Jets -
2γ-EM-Jets with
$\mathrm{m}_{\gamma Y}<0.3$
$Z_{\gamma \nu}<0.8$

EM-Jets with no. photons >2
\diamond Isolated π^{0} s have large asymmetries consistent with previous observation (CIPANP-2012 Steven Heppelmann)
https://indico.triumf.ca/contributionDisplay.pycontribld=349\&sessionld=44\&confld=1383
\diamond Asymmetries for jettier events are much smaller

A_{N} vs. EM-Jet Energy

$$
\pi^{0} \text {-Jets - }
$$

2γ-EM-Jets with
$\mathrm{m}_{Y Y}<0.3$
$Z_{V p}<0.8$
2γ-EM-Jets ($\boldsymbol{\eta}+$ continuum) with $m_{Y \nu}>0.3$

EM-Jets with no. photons >2
\diamond Isolated π^{0} s have large asymmetries consistent with previous observation (CIPANP-2012 Steven Heppelmann)
https://indico.triumf.ca/contributionDisplay.pycontribld=349\&sessionld=44\&confld=1383
\diamond Asymmetries for jettier events are much smaller

A_{N} for different \# photons in EM-Jets

\diamond 1-photon events, which include a large π^{0} contribution in this analysis, are similar to 2-photon events
\diamond Three-photon jet-like events have a clear non-zero asymmetry, but substantially smaller than that for isolated π^{0} s
$\diamond A_{N}$ decreases as the event complexity increases (i.e., the "jettiness")
$\diamond A_{N}$ for \#photons >5 is similar to that \#photons = 5

Summary

\diamond EM-Jets are reconstructed from photons detected in the FMS at STAR.
\diamond Jets with isolated π^{0} have large asymmetry as seen before.
\diamond Three-photon jet-like events have a clear non-zero asymmetry, but substantially smaller than that for isolated π^{0} s.
$\diamond A_{N}$ decreases as the event complexity increases(i.e., the "jettiness").

Backup slides

Transverse Single-Spin Asymmetry and Cross-Section for π^{0} and η Mesons at Large Feynman- x in $p^{\uparrow}+p$ Collisions at $\sqrt{s}=200 \mathrm{GeV}$

PYTHIA simulations

Systematics arising from intermixing of event classes

