#### Measurement of Quark Transversity through the Collins Mechanism in Mid-Rapidity Jets in p↑p Collisions at STAR

Robert Fersch University of Kentucky for the STAR Collaboration

Talk for the 2009 April Meeting of the American Physical Society Motivation: Understanding the Parton Content of the Nucleon

Motivation: Understanding the Parton Content of the Nucleon













# Motivation: Understanding the Parton Content of the Nucleon Quark "transversity": $\delta q \equiv q^{\uparrow} - q^{\downarrow}$

Motivation: Understanding the Parton Content of the Nucleon  $S_{\perp}$ Quark "transversity":  $\delta q \equiv q^{\uparrow} - q^{\downarrow}$  $P proton q^{\uparrow(\downarrow)}$  is the probability of finding a quark with spin equal (opposite) to  $S_{\perp}$ 



What is known about  $\delta q$ ?





Motivation: Understanding the Parton Content of the Nucleon  $S_{\perp}$ **Quark "transversity":**  $\delta q \equiv q^{\uparrow} - q^{\downarrow}$  $p_{proton} q^{\uparrow(\downarrow)}$  is the probability of finding a quark with spin equal (opposite) to  $S \perp$ What is known about  $\delta q$ ? 0.4 0.3 x δu 0.2 • Very little (compared to  $\Delta q$ ); 0.1 limited experimental data

• Chiral-odd effect (couples to  $\gamma_{5\sigma\mu\nu}$ )  $\Rightarrow$  higher order effect



Motivation: Understanding the Parton Content of the Nucleon  $S_{\perp}$ **Quark "transversity":**  $\delta q \equiv q^{\uparrow} - q^{\downarrow}$  $p_{\textit{proton}} q^{\uparrow(\downarrow)}$  is the probability of finding a quark with spin equal (opposite) to  $S\perp$ What is known about  $\delta q$ ? Soffer bound 0.4 0.3 x δu 0.2 • Very little (compared to  $\Delta q$ ); 0.1 limited experimental data -0.1 • Chiral-odd effect (couples to  $\gamma_5 \sigma_{\mu\nu}$ ) 0.1 PRD 75, ⇒ higher order effect 0.05 054032 (2006) x δd Anselmino, et • Constrained by Soffer bound: -0.1 al. Soffer bound  $|\delta q(x, Q^2)| \le \frac{1}{2}[q(x, Q^2) + \Delta q(x, Q^2)]$ -0.2 0.2 0.4 0.6 0.8

х

#### Experimental access to $\delta q$

 $p(P_A, S_\perp) + p(P_B) \rightarrow jet(P_J) + X \rightarrow \pi^{\pm} + X$ 



 $p(P_A, S_\perp) + p(P_B) \rightarrow jet(P_J) + X \rightarrow \pi^{\pm} + X$ 

one proton polarized



 $p(P_A, S_\perp) + p(P_B) \rightarrow jet(P_J) + X \rightarrow \pi^{\pm} + X$ 

one proton polarized

inclusive (all jets)





 $p(P_A, S_\perp) + p(P_B) \rightarrow jet(P_J) + X \rightarrow \pi^{\pm} + X$ 

one proton polarized

inclusive (all jets)













polarized quark  $\rightarrow$  jet  $\Rightarrow$ 

 $\Phi$ -dependence of crosssection on  $S_{\perp}^{\pm}$ 



polarized quark  $\rightarrow$  jet  $\Rightarrow$  $\phi$ -dependence of crosssection on  $S_{\perp}^{\pm}$  Measured asymmetry

$$A_N = \frac{\langle 2\sin(\phi_S - \phi_\pi) d\Delta \sigma^{TU} \rangle}{\langle d\sigma^{UU} \rangle}$$



 $\begin{array}{l} \mbox{polarized quark} \rightarrow \mbox{jet} \Rightarrow \\ \mbox{$\varPhi$-dependence of cross-section on $S_{\perp}^{\pm}$} \end{array}$ 

$$A_{N} = \frac{\langle 2\sin(\phi_{S} - \phi_{\pi})d\Delta\sigma^{TU} \rangle}{\langle d\sigma^{UU} \rangle} \qquad \begin{array}{l} \Delta\sigma^{TU}, \ \sigma^{UU} \\ \text{depend on } z, j_{T} \\ z \equiv p_{\pi}/p_{JET} \end{array}$$



polarized quark  $\rightarrow$  jet  $\Rightarrow$  $\Phi$ -dependence of crosssection on  $S_{\perp}^{\pm}$  Measured asymmetry

$$\Delta \sigma^{TU}, \sigma^{UU}$$
depend on z, jT
$$z \equiv p_{\pi}/p_{JET}$$



polarized quark  $\rightarrow$  jet  $\Rightarrow$  $\Phi$ -dependence of crosssection on  $S_{\perp}^{\pm}$ 

Measured asymmetry  
$$A_{N} = \frac{\langle 2\sin(\phi_{S} - \phi_{\pi})d\Delta\sigma^{TU} \rangle}{\langle d\sigma^{UU} \rangle} \begin{bmatrix} \Delta\sigma^{TU}, \sigma^{UU} \\ \text{depend on } z, j_{T} \\ z \equiv p_{\pi}/p_{JET} \end{bmatrix}$$



 $z \equiv p_{\pi}/p_{JET}$ 



section on S<sub>1</sub><sup>±</sup>

 $z \equiv p_{\pi}/p_{JET}$ 











 $\frac{d\sigma}{dy_1 dy_2 dp_T^2 dz d^2 j_T} \equiv \frac{d\sigma}{d\mathbf{P}.\mathbf{S}.} = \frac{d\sigma_{UU}}{d\mathbf{P}.\mathbf{S}.} + |S_\perp| \frac{|j_T|}{m_\pi} \sin(\phi_\pi - \phi_S) \frac{d\sigma_{TU}}{d\mathbf{P}.\mathbf{S}.}$
Extraction of  $\delta q$ F. Yuan, arXiv:0804.3047 [hep-ph] (2008)



Extraction of  $\delta q$ F. Yuan, arXiv:0804.3047 [hep-ph] (2008)



























**Measured asymmetry** 

$$A_N = \frac{\langle 2\sin(\phi_S - \phi_\pi) d\Delta \sigma^{TU} \rangle}{\langle d\sigma^{UU} \rangle}$$

**Measured asymmetry** 

$$A_N = \frac{\langle 2\sin(\phi_S - \phi_\pi) d\Delta \sigma^{TU} \rangle}{\langle d\sigma^{UU} \rangle}$$

$$A_N \approx \left[ \frac{\delta q(x)}{f_q(x)} \frac{\Delta^N D_q(z,j_T)}{D_q^h(z,j_T)} \frac{H_{qb \to qb}^{\text{Collins}}}{H_{qb \to cd}} \right]_{\text{favored } q} + \left[ \frac{\delta q(x)}{f_q(x)} \frac{\Delta^N D_q(z,j_T)}{D_q^h(z,j_T)} \frac{H_{qb \to qb}^{\text{Collins}}}{H_{qb \to cd}} \right]_{\text{unfavored } q}$$

**Measured asymmetry** 

$$A_N = \frac{\langle 2\sin(\phi_S - \phi_\pi) d\Delta \sigma^{TU} \rangle}{\langle d\sigma^{UU} \rangle}$$

$$A_N \approx \left[ \frac{\delta q(x)}{f_q(x)} \frac{\Delta^N D_q(z,j_T)}{D_q^h(z,j_T)} \frac{H_{qb \to qb}^{\rm Collins}}{H_{qb \to cd}} \right]_{\rm favored } q + \left[ \frac{\delta q(x)}{f_q(x)} \frac{\Delta^N D_q(z,j_T)}{D_q^h(z,j_T)} \frac{H_{qb \to qb}^{\rm Collins}}{H_{qb \to cd}} \right]_{\rm unfavored } q$$

Spin transfer & parton kinematics (x, x') calculated using STAR simulation package (GEANT + PYTHIA) including full jet reconstruction & trigger effects

**Measured asymmetry** 

$$A_{N} \approx \left[\frac{\delta q(x)}{f_{q}(x)} \frac{\Delta^{N} D_{q}(z,j_{T})}{D_{q}^{h}(z,j_{T})} H_{qb \rightarrow qb}^{Collins} \\ H_{qb \rightarrow qb} \\ H_{qb \rightarrow cd} \right]_{favored q} + \left[\frac{\delta q(x)}{f_{q}(x)} \frac{\Delta^{N} D_{q}(z,j_{T})}{D_{q}^{h}(z,j_{T})} H_{qb \rightarrow cd} \\ H_{qb \rightarrow cd} \\ favored q \\ \textbf{Spin transfer coefficient} \\ \textbf{BJP1 127221} \underbrace{\textbf{P2_for}}_{\textbf{Dives 065}} \\ \textbf{Burl 127221} \underbrace{\textbf{P2_for}}_{\textbf{Dives 065}} \\ \textbf{P2_for 065} \\ \textbf{P2_fo$$

**Measured asymmetry** 

$$A_{N} \approx \begin{bmatrix} \frac{\delta q(x)}{f_{q}(x)} \frac{\Delta^{N} D_{q}(z,j_{T})}{D_{q}^{h}(z,j_{T})} \stackrel{H_{qb \rightarrow qb}}{H_{qb \rightarrow cd}} \end{bmatrix}_{\text{favored } q} + \begin{bmatrix} \frac{\delta q(x)}{f_{q}(x)} \frac{\Delta^{N} D_{q}(z,j_{T})}{D_{q}^{h}(z,j_{T})} \stackrel{H_{qb \rightarrow cd}}{H_{qb \rightarrow cd}} \end{bmatrix}_{\text{unfavored } q}$$
Spin transfer coefficient
$$B_{JP1 127221} \xrightarrow{P2 \text{ for}} F_{\text{favored } q} + \begin{bmatrix} \frac{\delta q(x)}{f_{q}(x)} \frac{\Delta^{N} D_{q}(z,j_{T})}{D_{q}^{h}(z,j_{T})} \stackrel{H_{qb \rightarrow cd}}{H_{qb \rightarrow cd}} \end{bmatrix}_{\text{unfavored } q}$$
Spin transfer & parton kinematics (x, x') calculated using STAR simulation package (GEANT + PYTHIA) including full jet reconstruction & trigger effects
$$Prediction \text{ (estimate): } A_{N}(\pi^{\pm}) \approx \pm 0.03$$

Partonic Spin Transfer

**Measured asymmetry** 

$$_{\rm V} = \frac{\langle 2\sin(\phi_S - \phi_\pi) d\Delta \sigma^{TU} \rangle}{\langle d\sigma^{UU} \rangle}$$

$$A_N \approx \left[ \frac{\delta q(x)}{f_q(x)} \frac{\Delta^N D_q(z, j_T)}{D_q^h(z, j_T)} \frac{H_{qb \to qb}^{\text{Collins}}}{H_{qb \to cd}} \right]$$

Spin transfer coefficient

A



Spin transfer & parton kinematics (x, x´) calculated using STAR simulation package (GEANT + PYTHIA) including full jet reconstruction & trigger effects

 $+ \left[\frac{\delta q(x)}{f_q(x)} \frac{\Delta^N D_q(z,j_T)}{D_q^h(z,j_T)} \frac{H_{qb\to qb}^{\text{Collins}}}{H_{qb\to cd}}\right]$ 

unfavored q

**Prediction (estimate):**  $A_N(\pi^{\pm}) \approx \pm 0.03$ 

Statistical error (estimate):

Integrated luminosity  $\approx 1 \text{ pb}^{-1}$ 

Use inclusive jet  $A_{TT}$  measurement from same data

**Measured asymmetry** 

$$A_{N} = \frac{\langle 2\sin(\phi_{S} - \phi_{\pi})d\Delta\sigma^{TU}\rangle}{\langle d\sigma^{UU}\rangle}$$

$$\frac{f_{q}(x)}{f_{q}(x)} \frac{\Delta^{N}D_{q}(z,j_{T})}{D_{q}^{h}(z,j_{T})} \frac{H_{qb \to qb}^{\text{Collins}}}{H_{qb \to cd}} \Big|_{\text{favored }q} + \left[\frac{\delta q(x)}{f_{q}(x)} \frac{\Delta^{N}D_{q}(z,j_{T})}{D_{q}^{h}(z,j_{T})} \frac{H_{qb \to qb}^{\text{Collins}}}{H_{qb \to cd}}\right]$$

$$A_N \approx \left[ \frac{\delta q(x)}{f_q(x)} \frac{\Delta^N D_q(z, j_T)}{D_q^h(z, j_T)} \frac{H_{qb \to qb}^{\text{Collin}}}{H_{qb \to cb}} \right]$$

Spin transfer coefficient



Spin transfer & parton kinematics (x, x') calculated using STAR simulation package (GEANT + PYTHIA) including full jet reconstruction & trigger effects

unfavored q

**Prediction (estimate):**  $A_N(\pi^{\pm}) \approx \pm 0.03$ 

Statistical error (estimate):

Integrated luminosity  $\approx 1 \text{ pb}^{-1}$ 

Use inclusive jet  $A_{TT}$  measurement from same data

Statistically significant measurements  $(\sigma \sim A_N)$  can be made at  $p_T \leq 30$  GeV

# Experimental Apparatus (S.T.A.R.)

# Experimental Apparatus (S.T.A.R.)









TPC: charged particle tracking; dE/dx PID



BEMC, EEMC: barrel/endcap calorimeters for triggering, jet reconstruction





1) TPC track or EMC tower used as "seed"

2) hits inside fixed radius determine cluster

3) neighboring clusters calculated & merged if energy overlap > 50%



(hep-ex/0005012)

1) TPC track or EMC tower used as "seed"

2) hits inside fixed radius determine cluster

3) neighboring clusters calculated & merged if energy overlap > 50%



(hep-ex/0005012)



(hep-ex/0005012)














 $\Delta R$  measures collimation of particles within jet



Lower  $p_T$  cut is a tradeoff between statistics and gluon event contamination:

 $\Delta R$  measures collimation of particles within jet



 $\Delta R$  measures collimation of particles within jet

Lower  $p_T$  cut is a tradeoff between statistics and gluon event contamination:



STAR simulation (PYTHIA + GEANT) at  $\sqrt{s}$  = 200 GeV



 $\Delta R$  measures collimation of particles within jet

Lower  $p_T$  cut is a tradeoff between statistics and gluon event contamination:



STAR simulation (PYTHIA + GEANT) at  $\sqrt{s}$  = 200 GeV

Jet-based coordinate system



Jet-based coordinate system









#### Integrated over all *j*<sub>T</sub> values





Selected *j*<sub>7</sub> range





Selected *j*<sub>7</sub> range





Selected *j*<sub>T</sub> range





Selected *j*<sub>T</sub> range





Selected *j*<sub>7</sub> range





Selected *j*<sub>7</sub> range





#### Selected j<sub>7</sub> range

Need to separate into  $\uparrow$  and  $\downarrow$  spin states, weight each point by sin ( $\phi_S$ - $\phi_\pi$ ) and calculate asymmetry (also for z)

• Determination of polarization direction  $\Phi_{\text{S}}$  and magnitude

- Determination of polarization direction  $\Phi_{\rm S}$  and magnitude
- Charge normalization for S<sup>±</sup> states (BBC)

- Determination of polarization direction  $\Phi_{\rm S}$  and magnitude
- Charge normalization for S<sup>±</sup> states (BBC)
- Estimated systematics; trigger bias

- Determination of polarization direction  $\Phi_{\rm S}$  and magnitude
- Charge normalization for S<sup>±</sup> states (BBC)
- Estimated systematics; trigger bias
- Determination of statistics  $\Leftrightarrow$  optimization of lower  $p_{T \text{ jet}}$  limit

- Determination of polarization direction  $\Phi_{\text{S}}$  and magnitude
- Charge normalization for S<sup>±</sup> states (BBC)
- Estimated systematics; trigger bias
- Determination of statistics  $\Leftrightarrow$  optimization of lower  $p_{T \text{ jet}}$  limit
- Spin-sorted measurements; comparison of Y, B results