

Results from the RHIC Beam Energy Scan

Daniel Cebra For the STAR Collaboration

University of California, Davis

Daniel Cebra April 14, 2013 APS April Meeting 2013 Denver, CO

Slide 1 of 14

The RHIC Beam Energy Scan

• Much progress has been made in understanding the phase diagram of QCD matter. We expect a cross-over at low μ_B/T . At higher μ_B/T there could be a first order transition.

• Mapping the features of the QCD matter phase diagram is key to our understanding dense matter.

• In 2009 the RHIC PAC approved a series of six energies to search for the **turn-off of QGP signatures**, the **critical point**, and evidence of a **first order phase transition**.

What Determined the Range of Energies?

 $\left| \sum_{STAR} \right|$

- 1) RHIC had already run Au+Au at 200 and 62.4 GeV.
- 2) NA49 had completed a scan at the SPS and claimed observation of the *onset of deconfinement* at 7.7 GeV.
- 3) The μ_B size between steps needed to be small enough so that we would not miss the critical point.
- 4) The total request needed to be less than 10 weeks of collider time.
- 5) Adequate statistics would be needed at all energies, even for rare signals (ϕ, Ω) .
- 6) Certain energies could not be run by the collider (others energies not STAR and PHENIX simultaneous)
- Some p+p energies had been run at Fermilab and ISR.

Daniel Cebra April 14, 2013

Overview of the Beam Energy Scan Goals

• The RHIC facility has successfully completed a *phase I* beam energy scan (BES-I).

STAR

The STAR Detector for the Beam Energy Scan

Daniel Cebra April 14, 2013

APS April Meeting 2013 Denver, CO Slide 5 of 14

Central Au+Au at 7.7 GeV

STAR

Turn-off of QGP Signatures

High p_T suppression has been seen as a clear manifestation of energy loss by color objects (quarks) in a color medium (QGP)

Search for 1st Order PhaseTransition

•Lattice QCD calculations predict a first order phase transition, seen as a discontinuity in the density. •First order phase transition is characterized by unstable coexistence region. This spinodal region will have the lowest compressibility • v_1 is a manifestation of early pressure in the system

- •We see a minimum of the v_1 signal. \rightarrow Suggestive

Search for the Critical Point

Daniel Cebra April 14, 2013 APS April Meeting 2013 Denver, CO

Slide 9 of 14

Conclusions –BES-I

Strong

More

Data

Hints

1. **Turn-off of QGP signatures:**

- NCQ scaling breaks down below 19.6 GeV
- High *p_T* suppression not seen below 19.6 GeV
- LPV effect not seen below 11.5 GeV

2. Evidence of the first order phase transition.

• Inflection in v_2 at 7.7 GeV

Only had time to mention the signals in bold v_1 slope (dv_1/dy) sign change at 7.7 GeV Large Azimuthal HBT signal inconclusive

3. Search for the critical point.

- K/ π , K/p, or p/ π fluctuations are not conclusive.
- Higher moments of the net-proton distributions.

Daniel Cebra April 14, 2013 Outlook – BES-II

$\sqrt{\mathrm{S}_{\mathrm{NN}}}(\mathrm{GeV})$	62.4	39	27	19.6	15	11.5	7.7	5.0	4.5	3.5	3.0
$\mu_B (MeV)^*$	70	115	155	205	250	315	420	585	620	670	720
BES I (MEvts)	67	130	70	36		11.7	4.3		-		
Rate(MEvts/day)	20	20	9	3.6	1.6	1.1	0.5		Fixed Coll	l Targe	t
BES II (MEvts)				400	100	120	80	5	5	5	5
eCooling				8	6	4.5	3				
Beam (weeks)				2	1.5	3.5	7.5				Ţ

* J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, PR C73, 034905 (2006).

We have now put forward a BES-II proposal to focus on the most interesting region
Electron cooling is key to the feasibility of this proposal
eCooling will take a few years

•Expect BES-II in 2017-2019

Daniel Cebra April 14, 2013

APS April Meeting 2013 Denver, CO

Although several questions have been answered by data from BES-I, there are still some important open questions that we need more data to answer conclusively.

•Therefore we have proposed BES-II with 10-20 times better statistics.

- •This will need electron cooling, which is being developed by the Collider.
- •The iTPC upgrades will provide extended η coverage and low p_T cut-ins.
- •The Fixed target program will extend BES-II physics reach to the region below the onset of deconfinement.
- All these developments will be ready for a second low energy run at RHIC in the time frame from 2017-2020.

