Exploring the quadrupole deformation in uranium nuclei at STAR

Chunjian Zhang (for the STAR Collaboration)

Stony Brook University

Collective phenomena in heavy-ion collisions are very sensitive to initial ge-
ometry including nuclei deformation effects. Recent hydrodynamic model cal-
culations $[1, 2]$ suggest that such deformation effects can be probed by study-
ing event-by-event mean $p_T(\langle p_T \rangle)$ fluctuation and the correlation between the
mean p_T and harmonic flow (v_n) . In particular, due to prolate shape of the
uranium nuclei, significant difference between Au+Au and U+U collisions is
expected for these observables. Results on the high-order cumulants of $\langle p_T \rangle$
fluctuations and Pearson correlation coefficient between $\langle p_T \rangle$ and v_n as a func-
tion of centrality from Au+Au at $\sqrt{s_{NN}} = 200$ GeV and U+U at $\sqrt{s_{NN}} =$
193 GeV collisions with the STAR detector will be presented. Precise data-
model comparison could be helpful to constrain the quadrupole deforamtion
parameter β_2 of uranium nuclei.

[2] Bjorn Schenke, Chun Shen and Derek Teaney, https://arxiv.org/pdf/2004.00690.pdf.

^[1] Giuliano Giacalone, https://arxiv.org/abs/2004.14463.