Lambda(1520) production in Cu+Cu collisions at \sqrt{s}_{NN} = 200 GeV in STAR

Masayuki Wada For the STAR Collaboration

Resonances In Medium

STAR Detector

- **Time Projection Chamber (TPC)** is a main detector.
- Time of Flight System(TOF)
 - 120 trays
 - ~70% (2009)
 - ~100% (2010)

Resonance Reconstruction

- Kaons from 0.2-0.7 GeV/c
- Protons from 0.2-10 GeV/c

Calculate invariant mass with every pair in the same event.

Invariant Mass $M^2 = (E_p + E_K)^2 - (\vec{p}_p + \vec{p}_K)^2$

Background is estimated by Event Mixing technique.Take two different events and calculate invariant mass with kaon from one event and proton from the other.

• Events are mixed with 10 bins in vertex dist. and reaction plane.

Invariant Mass Signal

Momentum Spectrum

Suppression of Resonance Yields

(in Hadronic Medium)

Mean Transverse Momentum

Summary

- Resonance particles are sensitive to medium effects.
- Λ(1520)/Λ ratio is suppressed compared to the p+p data. This is likely due to rescattering of daughter particles in hadronic medium. The hadronic life time is estimated > 4fm/c.
- Mean pt is shifted due to signal loss at low momentum.

Outlook

Study leptonic decay resonances

=> direct information

10

BACKUP

Particle Identification

APS Anaheim, May 1

Momentum dependency

$$\frac{1}{\beta}_{ideal} = \sqrt{m^2/p^2 + 1}$$

Depend on mass of particles

In Experiment

$$\frac{1}{\beta}_{exp} = c \frac{TOF}{length}$$
from TPC

Masayuki Wada / UT @Austin

TOF System

- 120 trays in total
- Each tray has 32 MRPCs
- Time resolution ∆t ~80 ps in Au+Au

Medium Effects

- **Re-scattering**: loss of signal $\propto \sigma_{daughter-medium}$
- Re-generation:
 - increase resonance yields $\propto \sigma_{daughter-daughter}$

Estimate time span between chemical and kinetic freeze out.

Medium Effects

- From HBT study, the shape of the system can be estimated.
- Time span of partonic phase can be estimated.

Medium Effects

- pp = no medium
- Suppression : rescattering > regeneration
- Increase : regeneration > rescattering

Signal loss at low momentum due to re-scattering of daughter particles in hadronic medium.

=> Mean pt goes higher.

