

Analysis of fixed target collisions with the STAR detector

Brooke Haag for the STAR Collaboration Hartnell College / University of California at Davis Presented at the APS Physics April Meeting, Denver CO

April 14, 2013

QCD phase diagram

- * We have created a new state of matter at $\sqrt{(s_{NN})} = 200 \text{ GeV}$ consistent with the QGP !
- In 2010 and 2011 an extensive beam energy scan
 [1] was undertaken at RHIC with a major goal to find the critical point.
- Fixed target collisions will extend the physics analysis to even lower √s, higher μ_B

^[1]<u>http://arxiv.org/pdf/1007.2613.pdf</u>

Kinematic Calculations

Collision Energy (GeV)	Single Beam Energy	Single Beam Pz (GeV/c)	Fixed Target \sqrt{s}	Single Beam Rapidity	Center of Mass Rapidity
19.6 Au+Au	9.8	9.76	4.47 Au+Al	3.04	1.52
II.5 Au+Au	5.75	5.67	3.53 Au+Al	2.51	1.25
7.7 Au+Au	3.85	3.74	2.99 Au+Al	2.10	I.05

 $\sqrt{(s_{NN})} = center of$ mass energy
$$\begin{split} & \sqrt{(s_{\rm NN})} \,= \sqrt{(2m^2+2Em)} \\ & m = 0.9315 \; GeV/c^2 \; ; E = 9.8 \; GeV \\ & \sqrt{(s_{\rm NN})} = 4.47 \; GeV \end{split}$$

 $p_z = \sqrt{(E^2 - m^2)} = 9.76 \text{ GeV}/c$

 $y_{beam} = 0.5^*[ln(E + p_z)/(E - p_z)]$ $y_{beam} = 3.0$ $y_{cm} = 1.5$

rapidity (y)

3

Event Selection

Centrality

Fixed Target \sqrt{s}	2.99	3.53	4.47
Fixed Target y _{cm}	1.05	1.25	1.52
Events satisfying fixed target cuts	3.0 M	4.1 M	3.1 M
Au+Al top 10%	78 K	114 k	101 k

*Au+Al at $\sqrt{s_{NN}}$ = 4.5 GeV

* at very low multiplicity, we have light ions interacting

Number of pions is used to determine centrality via Glauber MC predictions

n, p are parameters of negative binomial fit

Centrality

Fixed Target √s	2.99	3.53	4.47
Fixed Target y _{cm}	1.05	1.25	1.52
Events satisfying fixed target cuts	3.0 M	4.1 M	3.1 M
Au+Al top 10%	78 K	4 k	101 k

Au+Al at $\sqrt{s_{NN}} = 4.5 \text{ GeV}$

red = interacting Al nucleons blue = interacting Au nucleons purple = non-interacting Au (fm) 10 nucleons Au+AI at $\sqrt{S_{NN}}$ = 4.5 GeV b = 3.384 fm-10 -5 0 5 -10 10 x (fm)

37 protons within radius of 3.4 fm gives Coulomb potential = 15 MeV

→ measure Coulomb boost of pions which will allow us to estimate # of interacting protons

Particle identification via dE/dx

pion spectra for $\sqrt{(s_{NN})} = 3, 3.5, 4.5 \text{ GeV}$

$|y_{cm}| = < 0.05$

proton spectra for $\sqrt{(s_{NN})} = 3, 3.5, 4.5 \text{ GeV}$

Au+Al Invariant Proton Yield $\mid y_{cm} \mid = < 0.05$

π^+/π^- yield ratios

* efficiency corrections pending* only statistical errors on STAR data

[1] L. Ahle *et al.* (E866) Nucl.Phys. **A610**, 139c (1996), and PRC57, R446 (1998).

[2] L. Rosselet *et al.* (WA98) Nucl.Phys. A698, 647c (2002).
[3] L. Kumar *et al.* (STAR) J.Phys.G; Nucl.Part.Phys. 38 (2011) 124145.

[4] G. Baym and P. Braun-Munzinger, Nucl. Phys. A610, 286c (1996).

- Net positive charge in the collision zone
 - * Expanding spherical source → effective potential
 - Coulomb potential of the source modifies momentum distribution; greater effect for low– momentum π
- With efficiency corrections, we will be able to report extracted parameters from fits to data (shown at left) including initial pion ratio and the full Coulomb potential
 - STAR fixed target data is consistent with former measurements and follows expected trends

*

Conclusions and Outlook

- We have extracted pion and proton spectra (uncorrected) for fixed target collisions with the STAR experiment via excellent particle identification in the TPC.
- Currently a fixed target program has approval. Installation in the next run. (See Daniel Cebra's talk)
- We can extend the BES program search for the critical point to lower energies.
- * We have carried out fixed target physics with the STAR experiment; a paper is in the works!

* We have carried out fixed target physics with the STAR experiment; a paper is in the works!

Backup

Coulomb Fit Function

