

J/ψ polarization measurement in p+p collisions at $\sqrt{s} = 200$ GeV at STAR

Siwei Luo (for the STAR Collaboration)

University of Illinois at Chicago

Motivation

Charmonia Study

2.Help to understand the interaction with Quark-Gluon Plasma, to probe the properties of QGP.

Motivation

 $t^2 \sigma / dp_\perp / dy (nb/GeV)$

Different models can well describe measured cross-sections

- Color Evaporation Model
- NRQCD approach –applicable at high p_T
- Color Glass Condensate+NRQCD
 applicable at low p_τ

Measurements of J/ψ polarization can help understand J/ψ production mechanism in hadron collisions and distinguish between different models.

 J/ψ polarization

 J/ψ polarization can be analyzed via the angular distribution of the decayed leptons

$$\frac{d\sigma}{d\cos\theta d\varphi} \propto 1 + \lambda_{\theta} \cos^{2}\theta + \lambda_{\theta\varphi} \sin(2\theta)\cos\varphi + \lambda_{\varphi} \sin^{2}\theta\cos(2\varphi)$$

In helicity frame the *z* axis is defined along the *J/ψ*
momentum in the center of mass frame.

9: Polar angle between momentum of positron in *J/ψ*
rest frame and the polarization axis z
9: Azimuthal angle
Polarization angular distribution follows:
1 + $\lambda_{\theta} \cos^{2}\theta$
 $w(\varphi) \propto 1 + \frac{2\lambda_{\varphi}}{3 + \lambda_{\theta}} \cos 2\varphi$

Solenoidal Tracker At RHIC

Solenoidal Tracker At RHIC

Time-Of-Flight Detector:

- eID at low p_T (<1.5 GeV/c)

Solenoidal Tracker At RHIC

Barrel Electro-Magnetic Calorimeter:

- eID at high p_T (>1.5 GeV/c)

- Trigger

Previous measurement

Measurement of better precision can be made to higher p_T .

Can not really distinguish different models within precision and kinematic reach of STAR 2009 data.

To make improvement:

- Need more data sample.
- Need to extend measurements to higher p_T.

From STAR p+p 200 GeV collisions:

EMC Trigger	Threshold	
нто	E _e >~2.5 GeV	
HT1	E _e >~3.6 GeV	
HT2	E _e >~4.3 GeV	
	2009	2012
	TOF 72%	TOF Fully installed
HT0(&&!HT2)	L=1.8pb ⁻¹	
НТО		L=1.4pb ⁻¹
HT1		L=9.4pb ⁻¹
HT2		L=23.5pb ⁻¹

 J/ψ signal

HT2 J/ψ Invariant Mass 1eID

1eID: 1 track requires strict electron identification→has more J/psi signals. HT2 J/ψ Invariant Mass 2eID

2eID: both tracks require strict electron identification → provide better signal background ratio.

Strict electron identification requires track satisfy the TOF or EMC electron identification cut.

Raw $J/\psi \cos\theta$ distribution and efficiency

Efficiency extracted from Geant detector simulation

STAR:Phys.Lett.B739(2014) 180

λ_{θ} measurement is feasible up to 14 GeV/c.

The triggers applied in Run9 and Run12 are different, which lead to different shapes. Compared with Run9 data, Run12 has more statistics.

Raw J/ $\psi \phi$ distribution and efficiency

Conclusion

- J/ ψ polarization can help understand quarkonium production mechanism and distinguish different models.
- Raw $J/\psi \cos\theta$ and φ distributions have been measured from STAR 2012 p+p 200 GeV data, and efficiency corrections are under way.
- Expect to have more precise measurements on λ_{θ} , λ_{φ} compared with published STAR 2009 data. Measurements can be extended up to 14 GeV/c.

Backup

 J/ψ signal

HT0 J/ ψ Invariant Mass 1eID

1eID: 1 track requires strict electron identification->more J/ψ signals.

HT0 J/ψ Invariant Mass 2eID

2eID: both tracks require strict electron identification->better signal background ratio.

Invariant mass lineshape with 1eID requirement

Invariant mass lineshape with 2eID requirement

