

Study of uranium nuclei deformation at STAR

Chunjian Zhang

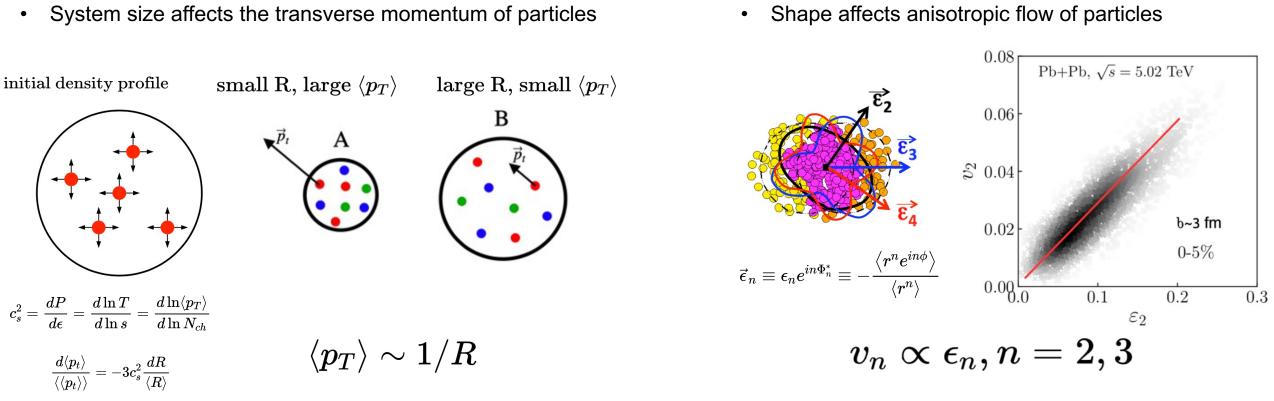
Session H14.00004

March 18, 2021

U.S. DEPARTMENT OF ENERGY

Supported in part by

Connecting the initial state to the nuclear geometry

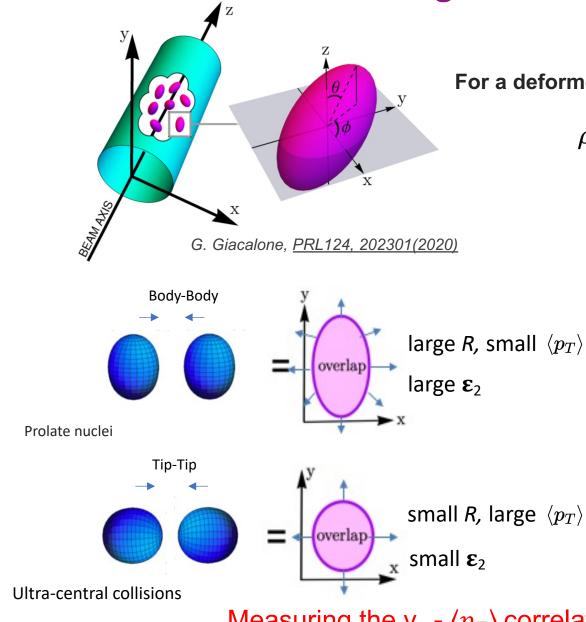


(Hydrodynamic approximation)

The fluctuation in size and shape are related to mean p_T fluctuation and v_n .

J. E. Bernhard et al., Nature Physics 15, 1113(2019); IS2021-Jiangyong Jia, M.A. Stephanov, *PRL102, 032301(2009); S.A. Voloshin, <u>PRC60, 024901(1999),</u> F.G. Gardim et al., <u>arXiv:2002.07008v1;</u> G. Giacalone, <u>PRC102, 024901(2020)</u>; W. Broniowski et al., <u>PRC80, 051902(R)(2009).</u> 2*

Connecting the initial state to the nuclear geometry



For a deformed nucleus, the leading form of nuclear density becomes:

Deformation is dominated by quadrupole component β_2

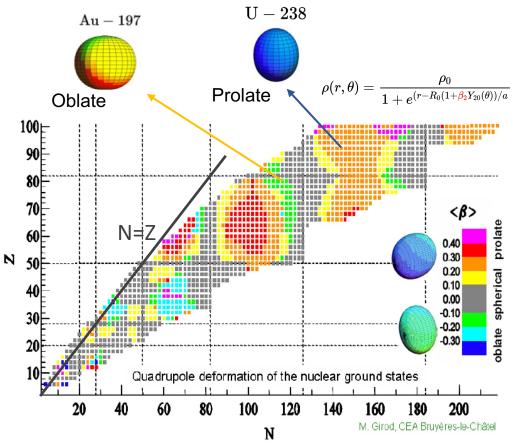
- $\mathbf{\epsilon}_2$ and R are influenced by the quadrupole deformation β_2
- $\langle p_T \rangle \sim 1/R$ and $v_2 \propto \varepsilon_2$:

deformation contributes to anticorrelation between v₂ and $\langle p_T \rangle$

Measuring the v₂ - $\langle p_T \rangle$ correlation could reveal the quadrupole deformation β_2 . ³

Quadrupole deformations β_2 of different nuclei

A. Gorgen, <u>Tech. Rep. 051, 019(2015)</u>



A few values based on the nuclear structure approximations

The β_2 of ²³⁸U has a large value:

reference	Raman et al.	Löbner et al.	Möller et al.	Möller et al.	CEA DAM	Bender et al.
method	\exp	\exp	FRDM	FRLDM	HFB	"beyond mean field"
eta_2	0.286	0.281	0.215	0.236	0.30	0.29

 $[{\rm Raman\ et\ al.,\ ADNDT78,}1(2001)]$

 $[L\ddot{o}bner et al., NDT A7, 495 (1970)]$

[Möller et al., ADNDT59,185(1995)] [Hilaire & Girod, EPJA(2007)] 7, 495 (1970)] [Möller et al., 1508.06294] [Bender et al., 1

[Bender et al., nucl-th/0508052]

The β_2 of ¹⁷⁹Au is small and can be used as baseline

reference	Möller et al.	Möller et al.	CEA DAM
method	FRDM	FRLDM	HFB
eta_2	-0.131	-0.125	-0.10

[Möller et al., 1508.06294] [Möller et al., ADNDT59,185(1995)] [Hilaire & Girod, EPJA(2007)]

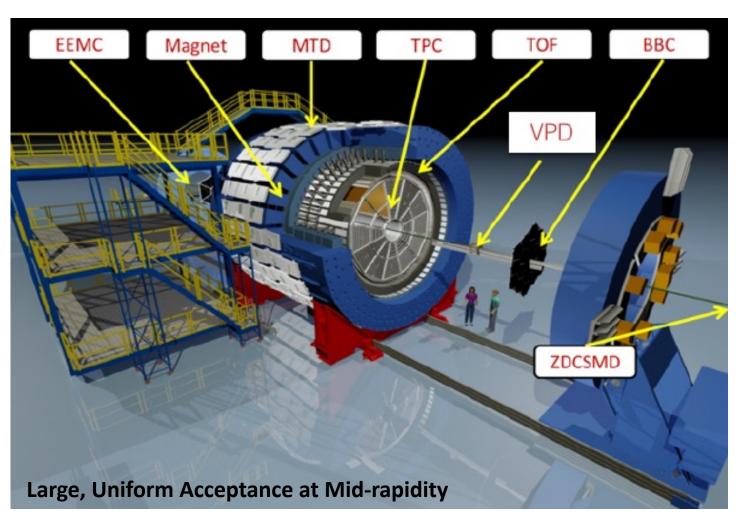
BNL nuclear data center

Hartree-Fock-Bogolyubov (Gogny D1S effective interaction)

Heavy-ion collisions could perform a new experimental test of constraint on the uranium β_2 in such a short time-scale (~10⁻²³s).

STAR detector and datasets

۲



- Dataset: Au+Au@200GeV U+U@193GeV
- $\langle {
 m p_T}
 angle,\,{
 m v_n},\,{
 m N_{ch}}$ are measured within: $0.2 < p_T < 2.0~{
 m GeV/c}~$ and $0.5 < p_T < 2.0~{
 m GeV/c}~$ $|\eta| < 1.0~$
- Centrality is defined by N_{ch} ($|\eta| < 0.5$).

Two topics are explored:

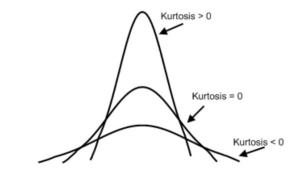
(I) Results for the size fluctuation

(II) Results for the $v_n\mathchar`-\langle p_T\rangle$ correlations

Observables for the size fluctuation

Mean p_T fluctuations

$$\begin{array}{ll} \mathsf{Mean} & [p_{\mathrm{T}}] \equiv \frac{\sum_{i} w_{i} p_{\mathrm{T},i}}{\sum_{i} w_{i}}, \langle \langle p_{\mathrm{T}} \rangle \rangle \equiv \langle [p_{\mathrm{T}}] \rangle_{\mathrm{evt}} & \delta p_{T} = p_{\mathrm{T}} - \langle \langle p_{\mathrm{T}} \rangle \rangle \\ \mathsf{Variance} & \langle (\delta p_{\mathrm{T}})^{2} \rangle = \left\langle \frac{\sum_{i \neq j} w_{i} w_{j} (p_{\mathrm{T},i} - \langle \langle p_{\mathrm{T}} \rangle)) (p_{\mathrm{T},j} - \langle \langle p_{\mathrm{T}} \rangle))}{\sum_{i \neq j} w_{i} w_{j}} \right\rangle_{\mathrm{evt}} \\ \mathsf{skewness} & \langle (\delta p_{\mathrm{T}})^{3} \rangle = \left\langle \frac{\sum_{i \neq j \neq k} w_{i} w_{j} w_{k} (p_{\mathrm{T},i} - \langle \langle p_{\mathrm{T}} \rangle)) (p_{\mathrm{T},j} - \langle \langle p_{\mathrm{T}} \rangle)) (p_{\mathrm{T},k} - \langle \langle p_{\mathrm{T}} \rangle))}{\sum_{i \neq j \neq k} w_{i} w_{j} w_{k}} \right\rangle_{\mathrm{evt}} \end{array}$$



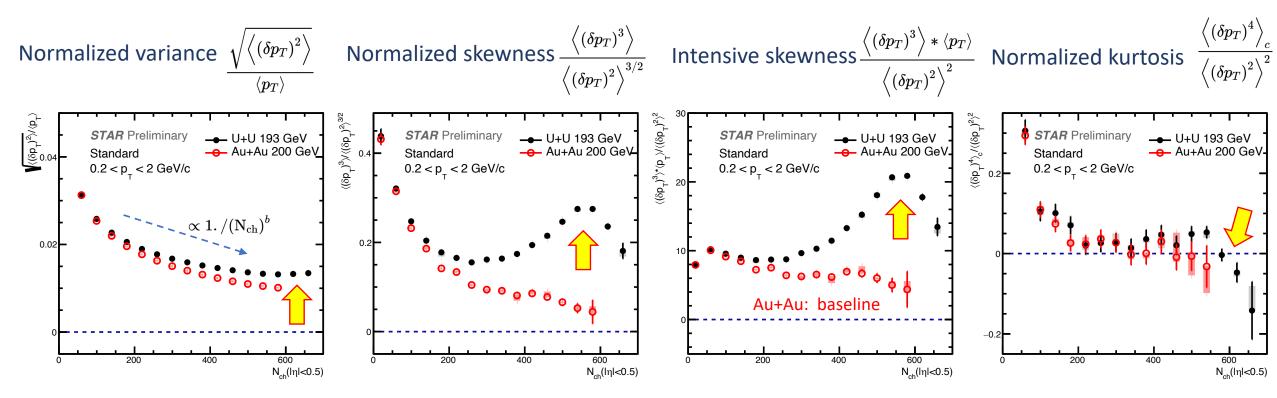
kurtosis
$$\left< (\delta p_T)^4 \right>_c = \left< (\delta p_T)^4 \right> - 3 * \left< (\delta p_T)^2 \right>^2$$

Normalized cumulants:

$$rac{\sqrt{\left\langle (\delta p_T)^2
ight
angle}}{\left\langle p_T
ight
angle}, \;\; rac{\left\langle (\delta p_T)^3
ight
angle}{\left\langle (\delta p_T)^2
ight
angle^{3/2}}, \;\; rac{\left\langle (\delta p_T)^3
ight
angle * \left\langle p_T
ight
angle}{\left\langle (\delta p_T)^2
ight
angle^2}, \;\; rac{\left\langle (\delta p_T)^4
ight
angle_c}{\left\langle (\delta p_T)^2
ight
angle^2},$$

P. Bozek, <u>PRC93, 044908(2016)</u>, <u>PRC96.014904(2017)</u>; B. Schenke et al., <u>PRC102, 034905(2020</u>); G. Giacalone et al., <u>PRC103, 024910(2021)</u>, <u>2101.00168</u>; F.G. Gardim et al., <u>PLB809, 135749(2020)</u>; <u>ATLAS EPJC79, 985(2019)</u>; J. E. Bernhard et al., <u>Nature Physics 15, 1113(2019)</u>; <u>ALICE EPJC 74, 3077(2014)</u>; <u>thesis1_STAR</u>; 6

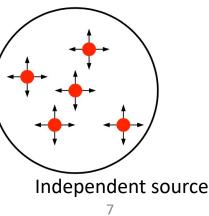
Mean p_T fluctuations



Normalized variance and skewness in Au+Au roughly follow a power-law function of Nch.

U+U shows significant enhancement in central region in variance and skewness quantities \rightarrow size fluctuation due to deformation effect.

U+U shows sign-change in normalized kurtosis \rightarrow size fluctuation due to deformation effect

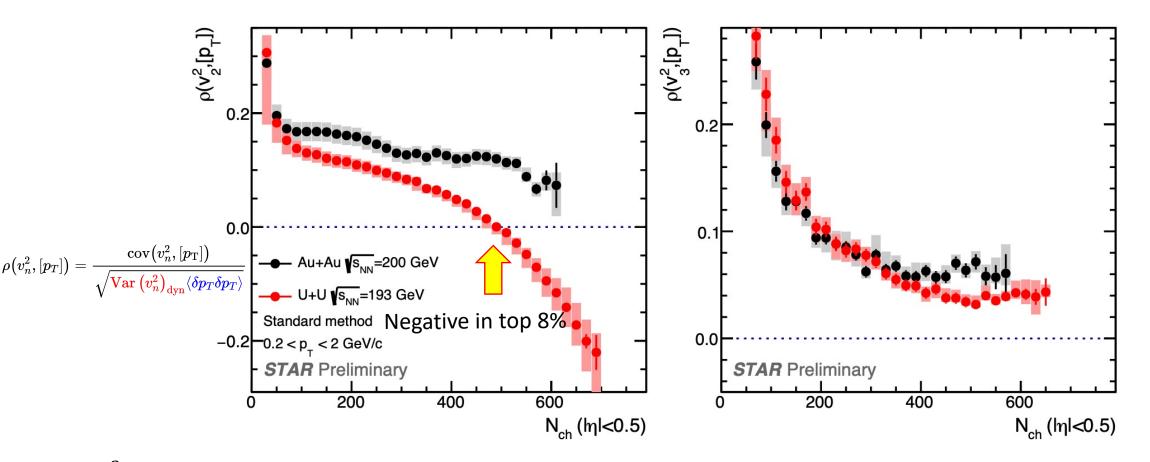


Observables for the $v_n\text{-}\langle p_T\rangle$ correlations

Pearson correlation coefficient: measuring linear correlation between two variables X and Y. $ho(X,Y)=rac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y}$ Pearson coefficient: v_p-p_T three particle correlator nt: \mathbf{v}_{n} - \mathbf{p}_{T} three particle correlator $cov(v_{n}^{2}, [p_{T}]) \equiv \left\langle \frac{\sum_{i \neq j \neq k} w_{i}w_{j}w_{k}e^{in\phi_{i}}e^{-in\phi_{j}}(p_{T,k} - \langle\langle p_{T} \rangle\rangle)}{\sum_{i \neq j \neq k} w_{i}w_{j}w_{k}} \right\rangle_{evt}$ $[p_{T}] \equiv \frac{\sum_{i} w_{i}p_{T,i}}{\sum_{i} w_{i}}, \langle\langle p_{T} \rangle\rangle \equiv \langle [p_{T}] \rangle_{evt}}{\left\langle v_{n}^{2}\right\rangle_{dyn} \langle\delta p_{T} \delta p_{T} \rangle}$ $: (v_{n}^{2})_{dyn} = v_{n}\{2\}^{4} - v_{n}\{4\}^{4}$ $\langle\delta p_{T} \delta p_{T} \rangle = \left\langle \frac{\sum_{i \neq j} w_{i}w_{j}(p_{T,i} - \langle\langle p_{T} \rangle)(p_{T,j} - \langle\langle p_{T} \rangle))}{\sum_{i \neq j} w_{i}w_{j}} \right\rangle_{evt}$ w_i is track weight $\operatorname{Var}ig(v_n^2ig)_{ ext{dyn}} = v_n\{2\}^4 - v_n\{4\}^4$

P. Bozek, <u>PRC93, 044908(2016)</u>, <u>PRC96.014904(2017)</u>; B. Schenke et al., <u>PRC102, 034905(2020</u>); G. Giacalone et al., <u>PRC103, 024910(2021)</u>, <u>2101.00168</u>; F.G. Gardim et al., <u>PLB809, 135749(2020)</u>; <u>ATLAS EPJC79, 985(2019)</u>; J. E. Bernhard et al., <u>Nature Physics 15, 1113(2019)</u>; <u>ALICE EPJC 74, 3077(2014)</u>; <u>thesis1_STAR</u>; 8

Pearson coefficient $\rho(v_n^2, [p_T])$

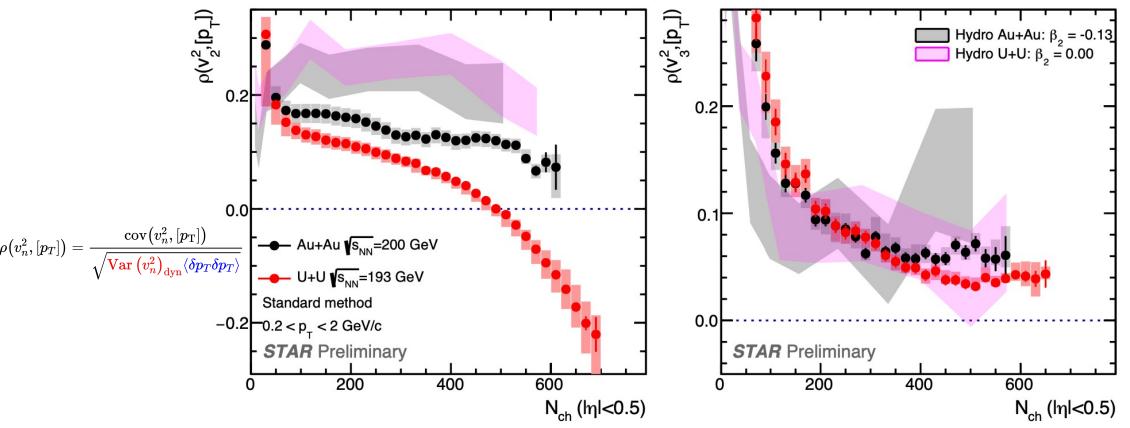


 $\rho(v_2^2, [p_T])$ has a clear difference: **negative (anticorrelation)** in U+U central, **positive** in Au+Au central.

 $\rho(v_3^2, [p_T])$ is **positive and consistent** in Au+Au and U+U collisions.

$\rho(v_n^2, [p_T])$ compared to IP-Glasma+Hydro

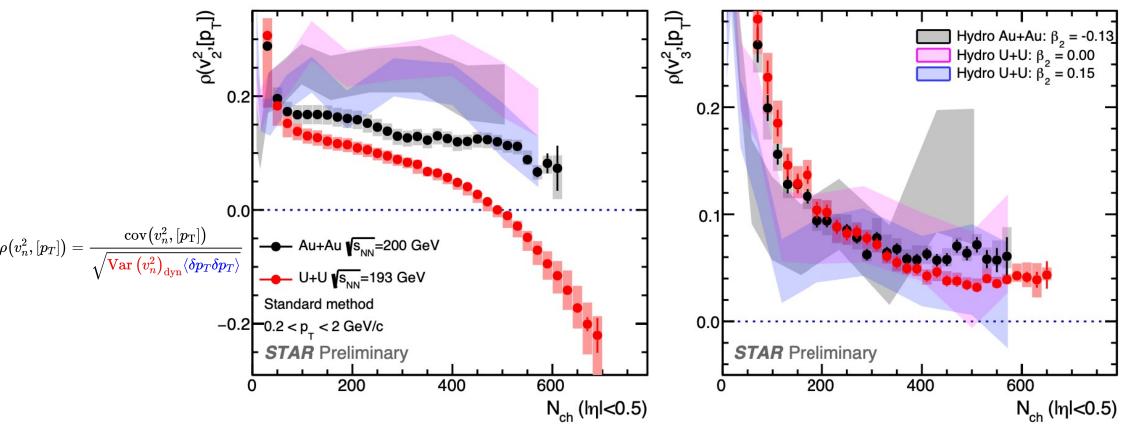
IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))



Without deformation, model over-predicts the values for $\rho(v_2^2, [p_T])$.

$\rho(v_n^2, [p_T])$ compared to IP-Glasma+Hydro

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))

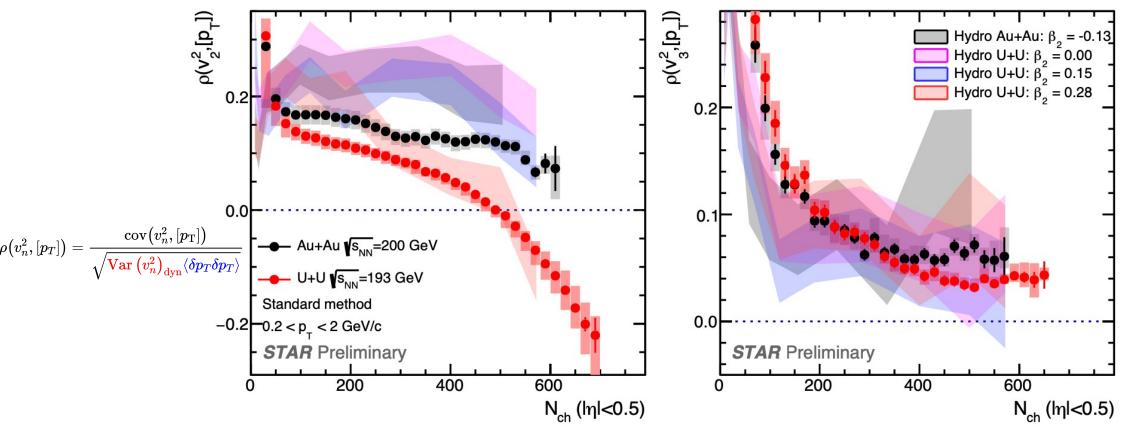


Without deformation, model over-predicts the values for $\rho(v_2^2, [p_T])$.

With increasing β_2 , model roughly describes the trend of $\rho(v_2^2, [p_T])$.

$\rho \! \left(v_n^2, \left[p_T \right] \right)$ compared to IP-Glasma+Hydro

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))

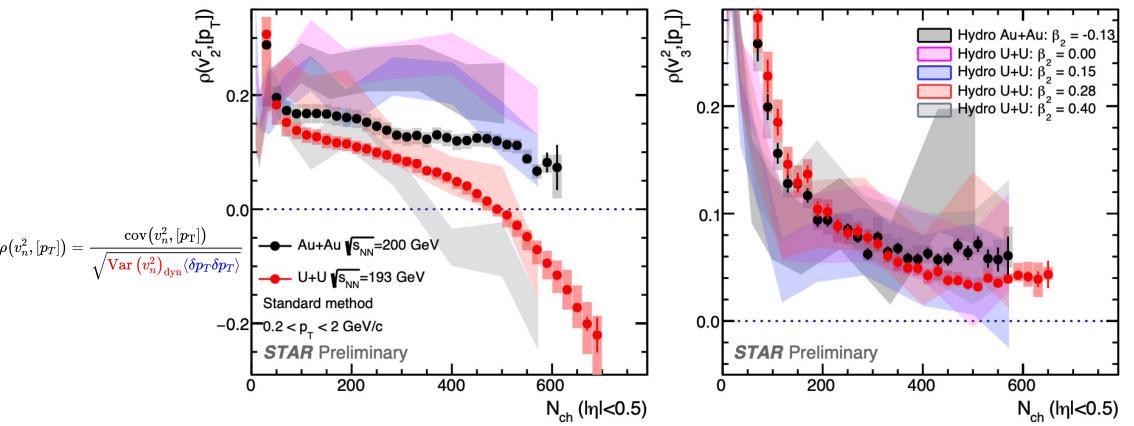


Without deformation, model over-predicts the values for $\rho(v_2^2, [p_T])$.

With increasing β_2 , model roughly describes the trend of $\rho(v_2^2, [p_T])$.

$\rho(v_n^2, [p_T])$ compared to IP-Glasma+Hydro

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))



Without deformation, model over-predicts the values for $\rho(v_2^2, [p_T])$.

```
With increasing \beta_2, model roughly describes the trend of \rho(v_2^2, [p_T]).
```

Model shows that $\rho(v_3^2, [p_T])$ are insensitive to β_2 .

The sign-change is due to deformation effect and model quantifies the β_2 value around 0.28< β_2 <0.4 ¹⁰

Conclusions and outlooks

1. $[p_T]$ fluctuations:

• Show sensitivity to quadruple deformation β_2 .

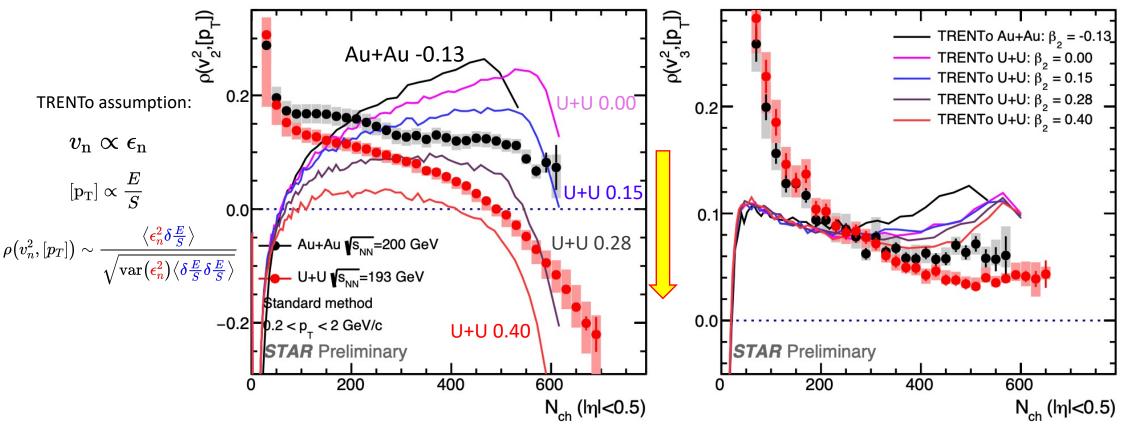
$$ho(r, heta) = rac{
ho_0}{1+e^{(r-R_0(1+eta_2 Y_{20}(heta))/a}}$$

- Strong increase of variance, skewness and negative kurtosis towards central U+U.
- 2. v_n [p_T] correlations:
 - Strong suppression and sign-change for n=2 in U+U, but no difference for n=3 in Au+Au and U+U.
 - Deformation influences collisions over a wide centrality range: mid-central to central.
 - Subevent method could decrease non-flow contributions in peripheral collisions.
 - Main features are robust against p_T selection.
- 3. Qualitatively described by IP-Glasma+MUSIC+UrQMD calculations:
 - Prefer a quadrupole deformation of $0.28 \le \beta_2 \le 0.40$.
 - Help model to constrain the initial conditions.
 - Open up an avenue for studying nuclear shape in heavy-ion collisions.
- 4. Outlooks: isobar collisions and small system collisions could address two questions
 - Could decipher the puzzle of nuclear deformation in Ru and Zr.
 - Could study the initial state momentum anisotropy from the CGC prediction.

Many thanks to APS and also thank you for listening.

$\rho \! \left(v_n^2, \left[p_T \right] \right)$ compared to TRENTo initial condition model

TRENTo: private calculation provided by Giuliano Giacalone (based on PRC102, 024901(2020), PRL124, 202301(2020))

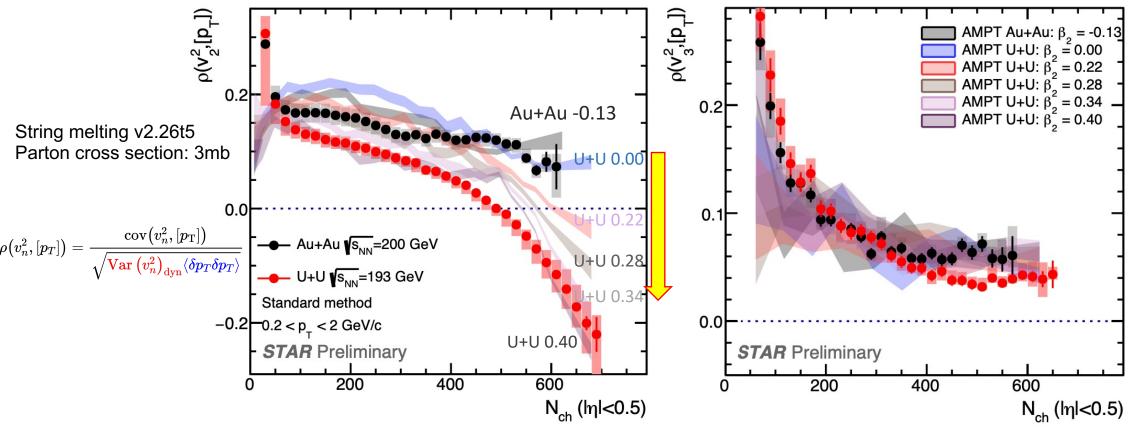


TRENTo fails to describe the STAR data but shows a hierarchical β_2 dependence in U+U collisions.

TRENTo suggests this sign-change in central U+U collisions due to deformation effect, and prefers 0.28< β_2 <0.4 TRENTo shows that $\rho(v_3^2, [p_T])$ is insensitive to the nuclear deformation effects.

$\rho \! \left(v_n^2, \left[p_T \right] \right)$ compared to transport AMPT model

AMPT: Chunjian Zhang, Jiangyong Jia et al., (In preparation)



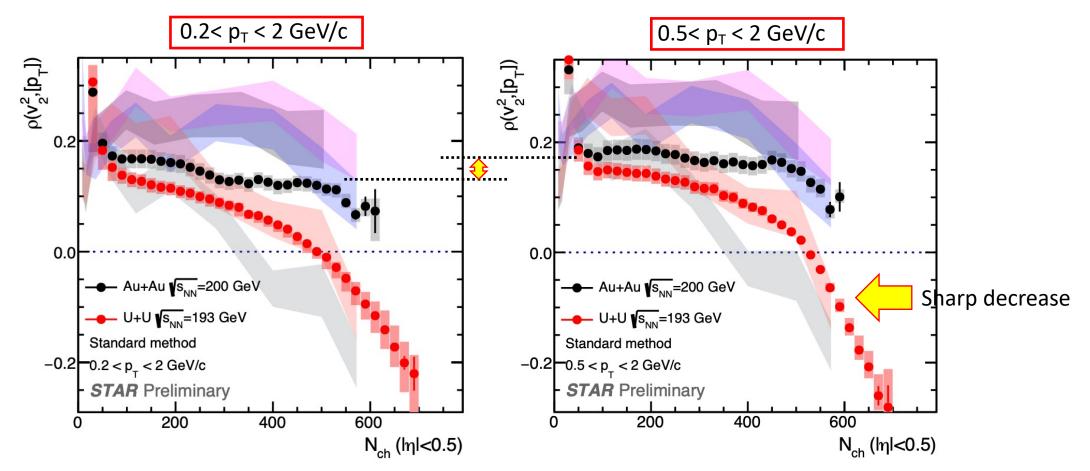
AMPT shows a clear β_2 dependence in Uranium $\rho(v_2^2, [p_T])$ while not in $\rho(v_3^2, [p_T])$.

AMPT also supports the sign-change of $\rho(v_2^2, [p_T])$ in U+U is due to deformation effect.

AMPT favors the β_2 value around 0.28< β_2 <0.4 for uranium.

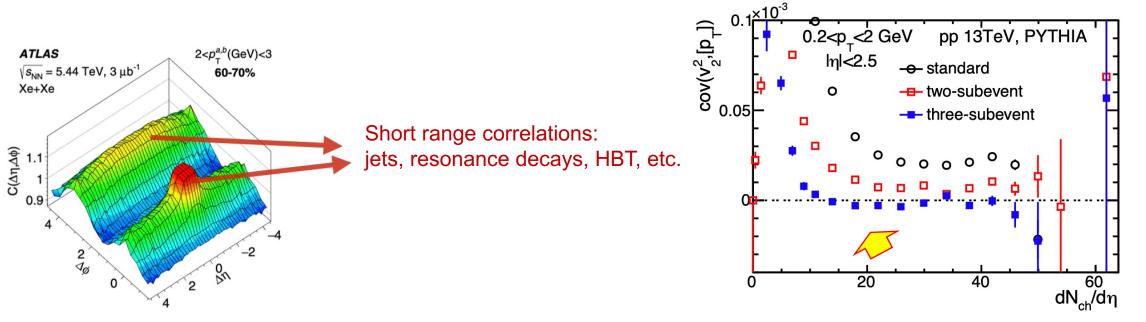
$\rho \! \left(v_n^2, \left[p_T \right] \right)$ in different \textbf{p}_{T} selection

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))



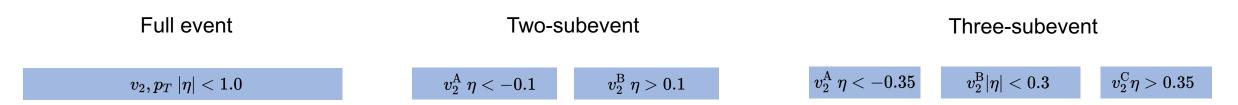
Features are same for $0.5 < p_T < 2$ GeV/c as $0.2 < p_T < 2$ GeV/c.

Non-flow suppression



C.J. Zhang et al, <u>arXiv:2102.05200</u>

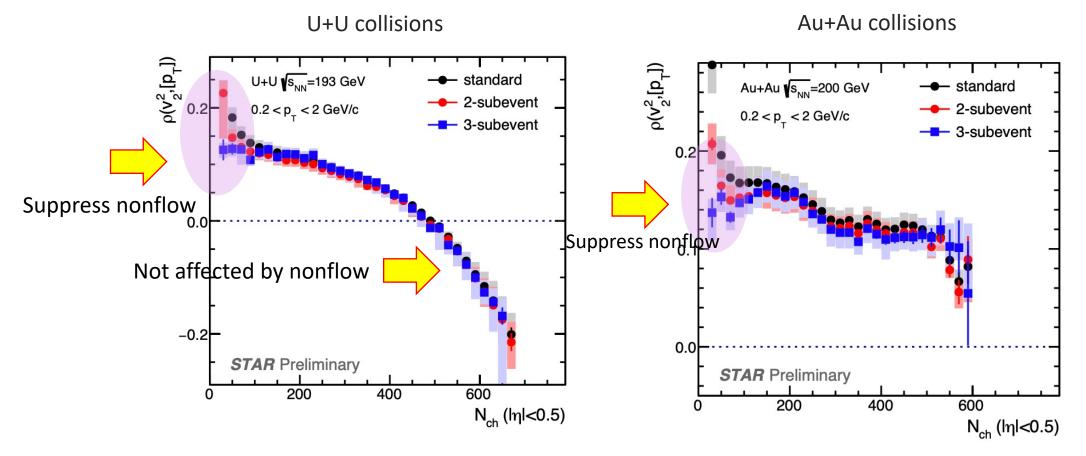
non-flow suppression via subevent methods by correlating particles from different η windows



Non-flow effect is important in peripheral region and they are greatly suppressed using subevent method.

P. Bozek, PRC93, 044908(2016), PRC96.014904(2017); B. Schenke et al., PRC102, 034905(2020); G. Giacalone et al., PRC103, 024910(2021), 2101.00168; F.G. Gardim et al., PLB809, 135749(2020); ATLAS EPJC79, 985(2019); J. E. Bernhard et al., Nature Physics 15, 1113(2019); ALICE EPJC 74, 3077(2014); thesis1_STAR; 16

The effects of non-flow in $\rho \big(v_n^2, [p_T] \big)$

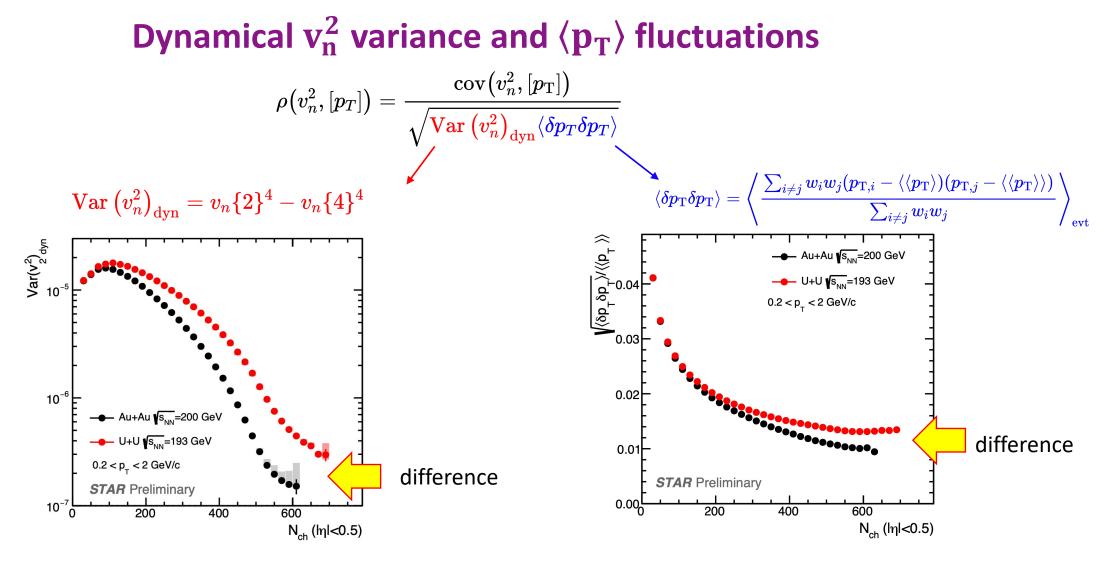


Standard method is consistent with subevent methods at high N_{ch}.

Subevent methods could decrease non-flow contributions in peripheral collisions.

Non-flow effect is not responsible for the sign-change in U+U collisions.

17

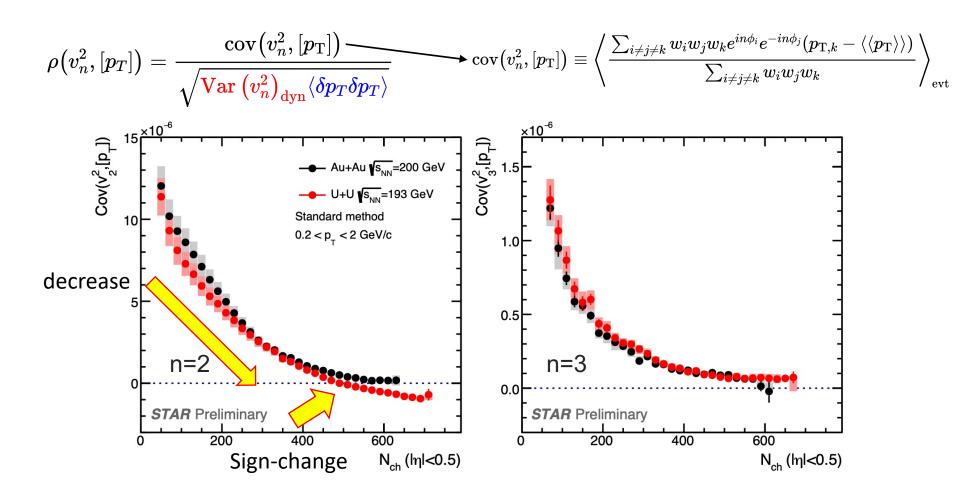


difference of flow fluctuation due to deformation.

difference of $\langle p_T \rangle$ fluctuation due to deformation .

Nuclear deformation plays a role in flow and $\langle p_T \rangle$ fluctuations.

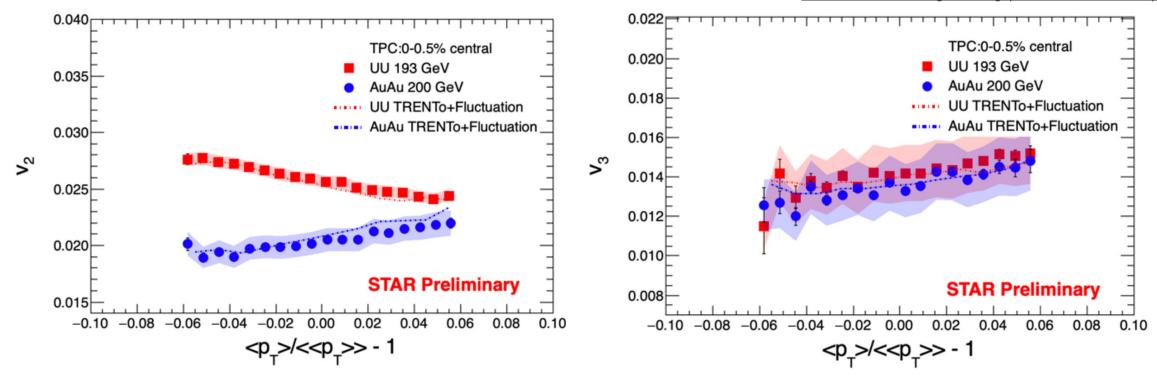
Covariance $Cov(v_n^2, [p_T])$



U+U collisions show a sign-change behavior in $Cov(v_2^2, [p_T])$ while not in Au+Au. But they are consistent for $Cov(v_3^2, [p_T])$. This sign-change behavior indicates the effect of deformation.

Event-by-event v_n vs. $\langle p_T \rangle$ in ultra central (0-0.5%) collisions

WWND2020, Shengli Huang (STAR Collaboration)



v_n	System	slope		
v_2	U + U	$-3.5\% \pm 0.1\%$		
v_2	Au + Au	$2.6\%\pm0.2\%$		
v_3	U + U	$1.7\%\pm0.2\%$		
v_3	Au + Au	$1.9\%\pm0.2\%$		

An anticorrelation is observed between v_2 and $\langle p_T \rangle$ in top 0.5% U+U collisions while not in Au+Au.

 v_3 and $\langle p_T \rangle$ correlations are positive and similar for Au+Au and U+U collisions.

After incorporating the statistical fluctuation due to finite multiplicity, the TRENTo model can reproduce the data quantitively.

The anticorrelation in v_2 vs. $\langle p_T \rangle$ for U+U is due to deformation.