

Insights from the STAR Fixed-Target Program

Daniel Cebra

University of California, Davis

For the STAR Collaboration

Daniel Cebra April 17, 2021

April APS Meeting virtual Slide 1 of 36

All QCD matter is colorless

Low μ_B , equal numbers of quarks and anti-quarks \rightarrow QGP cools to pion gas

→ *Black Plasma* (equal color and anti-color)

High μ_B , more quarks than anti-quarks \rightarrow QGP cools to baryon-rich gas

→ White Plasma (equal numbers of red, green, and blue quarks)

BES Phase I – What Did We Learn

• Signatures consistent with a parton dominated regime either disappear, lose significance, or lose sufficient reach at the low energy region of the scan.

•There are indicators pointing towards a softening of the equation of state which can be interpreted as evidence for a first order phase transition.

• The higher moment fluctuation is sensitive to critical phenomena, but these analyses place stringent demands on the statistics.

• Dilepton mass spectra show a broadening consistent with models including hadron gas and quark-gluon plasma components

Continuous P.T. above 19.6 GeV

Critical Point below 19.6 GeV

1st Order P.T. below BES range

Slide 3 of 36

BES-II Whitepaper 2014→ Listed as one of the highest priority goals in 2015 NSAC Report

describing future plans

01 June 2014

Beam Energy Scan II (2018-2021)

Select the most important energy range
→ 3 to 30 GeV (→ Add fixed-target program)

Improve significance
→Long runs, higher luminosity (→ electron cooling

A Refine the signals
→ Detector improvements (→ iTPC, eTOF, EPD)

→ Project listed as a top US NP priority in LRP 2015

Daniel Cebra April 17, 2021 11.5 Ge

Example: Where do we Expect a Critical Point?

April 17, 2021

virtual

Slide 5 of 36

Fixed Target Program

Experimental Setup

Beam Pipe studies from BES-I

Test run results from 2015

First physics run in 2018

Slide 6 of 36

Fixed-Target Program Exp. Setup

Gold Target:

- 250 µm foil
- 2 cm below the nominal beam axis
- 2 m from the center of STAR

Daniel Cebra April 17, 2021 April APS meeting virtual

Slide 7 of 36

The Upgrades are Important for the FXT Program

Detects Particles in the $0 < \eta < 2$ range π , K, p, d, t, h, α through dE/dx and TOF K_{s}^{0} , Λ , Ξ , Ω , ϕ , ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H through invariant mass

Daniel Cebra April 17, 2021 April APS meeting virtual

Slide 8 of 36

Particle Identification

STAR

Because the tracks are longer, on average, for FXT events than for collider events, the resolutions for both dE/dx and $1/\beta$ are better in FXT mode than collider mode.

Danie	l Ce	ebra
April	17,	2021

Acceptance for the FXT Program

FXT Energy √s _{NN}	Single Beam E _T (GeV)	Single beam E _k (AGeV)	Center- of-mass Rapidity	Chemical Potential µ _B (MeV)	Year of Data Taking
3.0	3.85	2.9	1.05	721	2018
3.2	4.59	3.6	1.13	699	2019
3.5	5.75	4.8	1.25	666	2020
3.9	7.3	6.3	1.37	633	2020
4.5	9.8	8.9	1.52	589	2020
5.2	13.5	12.6	1.68	541	2020
6.2	19.5	18.6	1.87	487	2020
7.2	26.5	25.6	2.02	443	2018
7.7	31.2	30.3	2.10	420	2020
9.1	44.5	43.6	2.28	372	2021
11.5	70	69.1	2.51	316	2021
13.7	100	99.1	2.69	276	2021
Daniel Cebra April APS meeting					

Slide 10 of 36

April 17, 2021

virtual

Studies using Beam Halo Background

2010 - 2014

Goals:

- Understand the Beam Halo Background
- Determine the applicability of STAR for fixed-target
- First of FXT results → Au+Al

Beam Halo on Al Vacuum Pipe

Daniel Cebra April 17, 2021 April APS meeting virtual

Slide 12 of 36

Pion Ratio Analysis

Daniel Cebra April 17, 2021 April APS meeting virtual

Slide 13 of 36

Direct Beam Test Runs 2015

Goals:

- Check the conclusion that there are gold ions in the halo
- Determine if the direct beam is a better conduct of operations
- Acquire enough data for significant feasibility studies
- Physics analyses → Reproduction of AGS results

Two test runs, one using gold beam the other using aluminum beam :

- → 4 PhD Theses (Kathryn Meehan, Yang Wu, Usman Ashraf, Todd Kinghorn)
- → 1 MS Thesis (Lukasz Kozyra)
- → 1 Postdoctoral project (David Tlusty)

FXT Results: $Vs_{NN} = 4.9$ GeV Al+Au

• Yields are consistent

Daniel Cebra April 17, 2021 April APS meeting virtual

Slide 15 of 36

$v_{NN} = 4.5 \text{ GeV Au} + \text{Au}$: pion spectra

April 17, 2021

virtual

Slide 16 of 36

vs_{NN} = 4.5 GeV Au+Au : proton spectra

Systematics of Stopping

 $v_{NN} = 4.5 \text{ GeV Au} + \text{Au} : V^0 \text{ yields}$

Danie	l Ce	ebra
April	17,	2021

$Vs_{NN} = 4.5 \text{ GeV Au} + \text{Au}$: spectra overview

E896 PRL 88 (2002) 062301 NA44 PRC 66 (2002) 044907 NA49 JPG 30 (2004) S701 NA49 PRL 93 (2004) 022302 NA57 JPG:NPP 32 (2006) 2065 WA98 PRC 67 (2003) 014906 E895 RPC 68 (2003) 054905 E895 NPA 698 (2002) 495c E917 PLB 476 (2000) 1 E802 NPA 610 (1996) 139c E877 PRC 63 (2001) 014902 E891 PLB 382 (1996) 35

v_{NN} = 4.5 GeV Au+Au : baryon directed flow

Danie	l Ce	ebra
April	17,	2021

v_{NN} = 4.5 GeV Au+Au : meson directed flow

Daniel Cebra April 17, 2021 April APS meeting virtual

Slide 22 of 36

$vs_{NN} = 4.5 \text{ GeV Au} + \text{Au} : p \text{ and } \pi \text{ elliptic flow}$

Protons and pions exhibit in-plane elliptic flow

 $v_{NN} = 4.5 \text{ GeV Au} + \text{Au} : \text{HBT}$

April 17, 2021

April APS meeting virtual

FXT Physics Program 2018-2021

Physics Goals

The Onset of Deconfinement:

- •High p_T suppression
- •NCQ scaling of elliptic flow
- •LPV through three particle correlators (CME)
- •Balance functions
- •Strangeness enhancement

Compressibility → First Order Phase Transition

- •Directed flow
- •Tilt angle of the HBT source
- •The volume of the HBT source
- •The width of the pion rapidity distributions (Dale)
- •The zero crossing of the elliptic flow (~6 AGeV)
- •Volume measures from Coulomb potential

<u>Criticality:</u>

- •Higher moments
- •Particle ratio fluctuations

<u>Chirality:</u>

•Dilepton studies

Hypernuclei:

Lifetime of the hypertriton

April 17, 2021

virtual

How are we doing so far?

	2018	Start	Stop	Good	Target
Worked out the	27 GeV	May 10 th	June 17 th	555 M	700 M
	3.0 FXT	May 30 th	June 4 th	258 M	100 M
operations	7.2 FXT	June 11 th	June 12 th	155 M	none
	2019	Start	Stop	Good	Target
	19.6 GeV	Feb 25 th	April 3 rd	582 M	400 M
Held off most of the FXT	14.6 GeV	April 4 th	June 3 rd	324 M	310 M
program due to	3.9 FXT	June 18 th	June 18 th	52.7 M	50 M
damage to the eTOF	3.2 FXT	June 28 th	July 2nd	200.6 M 🔇	200 M
	7.7 FXT	July 8th	July 9th	50.6 M	50 M
	200 GeV	July 11 th	July 12 th	138 M	140 M

	2020	Start	Finish	HLTgood	Target	STAR
	11.5 GeV	Dec 10 th	Feb 24 th	235 M	230 M	
/	7.7 FXT	Jan 28 th	Jan 29 th	112.5 M	100 M	
Completed the	4.5 FXT	Jan29 th	Feb 1 st	108 M	100 M	
bulk of the physics	6.2 FXT	Feb 1 st	Feb 2 nd	118 M	100 M	
program.	5.2 FXT	Feb 2 nd	Feb 3 rd	103 M	100 M	
Roughly one	3.9 FXT	Feb 4 th	Feb 5 th	117 M	100 M	
day for each energy	3.5 FXT	Feb 13 th	Feb 14 th	115.6 M	100 M	
energy	9.2 GeV	Feb 24 th	Sep 1 st	161.8 M	160 M	
	7.2 FXT	Sep 12 th	Sep 14 th	317 M	None	
	2021	Start	Stop	Good	Target	
	7.7 GeV	Jan 31 st	~ May 1 st	~100 M	100 M	Long run for
Added more	3.0 FXT		3 weeks	\langle	2.0 B	hypernuclei
overlap	9.2 FXT		1 day		50 M	momements
energies to	11.5 FXT		1 day		50 M	
study stopping	13.7 FXT		1 day		50 M	
Danial Cabra	7.2 FXT		TBA		None	
April 17, 2021	17.3 GeV		3 weeks		250 M	Slide 28 of 36

2018 FXT Preliminary Results

Daniel Cebra April 17, 2021 April APS meeting virtual

Particle Production at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$

April 17, 2021

virtual

Flow results at $\sqrt{s_{NN}} = 3.0 \text{ GeV}$

Proton Fluctuations – $\kappa\sigma^2$

Daniel Cebra April 17, 2021 April APS meeting virtual

Hyper-nuclei $\sqrt{s_{NN}} = 3.0 \text{ GeV}$

We Have Competition for this Physics

Online Event Display – FXT Event

Danie	l Ce	ebra
April	17,	2021

Conclusions

- Understanding the phase diagram of QCD matter is a top national strategic goal for Nuclear Physics
- The key energy range is √sNN = 3 30 GeV. → The FXT program is needed to cover the low end of that range.
- A fast and efficient conduct of operations has been developed for FXT running.
- Extensive data sets have been acquired at nine energies, data for three more energies will be acquired this year.
- QGP to hadron gas transition:
 - Continuous for energies above 19.6 GeV
 - Searches for a softening of the equation of state are underway
 - Searches for critical behavior are underway

The Phases of QCD

Quark-Gluon Plasma

BACKUPS

Beam E _T (GeV)	Beam E _k (AGeV)	Beam p _Z (GeV/c)	Rapidity y _{Beam}	√s _{NN} (GeV)	Rapidity У _{СМ}	Ch. Pot. µ _B (GeV)
3.85	2.92	3.73	2.10	3.0	1.05	721
4.59	3.66	4.50	2.28	3.2	1.13	699
5.75	4.82	5.67	2.51	3.5	1.25	666
7.3	6.4	7.25	2.75	3.9	1.37	633
9.8	8.9	9.44	3.04	4.5	1.52	589
13.5	12.6	13.5	3.37	5.2	1.68	541
19.5	18.6	19.5	3.73	6.2	1.87	487
26.5	25.6	26.5	4.04	7.2	2.02	443
31.2	30.3	31.2	4.20	7.7	2.10	420
44.5	43.6	44.5	4.56	9.2	2.28	372
70	69.1	70	5.01	11.5	2.51	316
100	99.1	100	5.37	13.7	2.69	276

The STAR Detector Upgrades → BES-II

Endcap TOF

iTPC Upgrade:

- Rebuilds the inner sectors of the TPC
- Continuous Coverage
- Improves dE/dx
- Extends η coverage to
- 1.5 (2.2 for FXT)
- Lowers p_T cut-in from 125 MeV/c to 60 MeV/c
- Ready in 2019

EndCap TOF Upgrade:

- Rapidity coverage is critical
- PID at forward rapidity
- Allows higher energy range
- of FXT program
- CBM/FAIR

Inner TPC

sta

• Ready 2019

Event Plane Detector

EPD Upgrade:

- Improves trigger
- Reduces background

 Allows a better and independent reaction plane measurement critical to BES and FXT

• Ready 2018

Daniel Cebra April 17, 2021

virtual

February 2019

Installing the iTPC Upgrade

Daniel Cebra April 17, 2021 April APS meeting virtual

Slide 41 of 36

R

eTOF Upgrade – Current Performance

Danie	l Ce	ebra
April	17,	2021

EPD Upgrade – Current Performance

Daniel Cebra April APS meeting April 17, 2021 virtual	Slide 44 of 36
--	----------------

Talks at this meeting presenting FXT results:

- K15 02 Zach Sweger Centrality Determination
- K15 05 Yu Zhang Higher order cumulants
- K15 06 Jonathan Cap Lambda Fluctuations
- L15 02 Sooraj Radhakrishnan v_1 and v_2 of π , K, p
- L15 03 Guannan Xie Phi production
- L15 04 Ding Chen Flow of ϕ mesons
- L15 07 Xionghong He $-v_1$ and v_2 of light nuclei
- L15 08 Hui Lui Light nucleus production
- L15 09 Yue Hang Leung -- Hypernuclei