

Identified particle production in isobaric collisions of Ru+Ru and Zr+Zr at $\sqrt{s_{NN}}$ = 200 GeV with the STAR experiment

Yang Li (for the STAR collaboration) University of Science and Technology of China Brookhaven National Laboratory

- Motivation
- Dataset and cuts
- Particle identification technique and rotation parameter extraction
- Raw identified particle yields
- Summary and outlook

Motivation

- The size of Ru and Zr is between the sizes of Cu and Au, so system size dependence of the QGP properties can be studied
- Possible difference between Ru and Zr such as shape and isospin can be studied
- Large datasets of isobar collisions (~4 Billion good events) provide opportunity to study charged hadron spectra with great precision

STAR experiment

Main detectors used in analysis:

Time Projection Chamber(TPC):

- Measures charge and momentum of particles
- Particle identification $(|\eta| < 1, 0 < \phi < 2\pi)$

Time Of Flight detector(TOF):

• Particle identification $(|\eta| < 0.9, 0 < \phi < 2\pi)$

Yang Li

Dataset and cuts

Dataset:

2018 combined Ru+Ru/Zr+Zr $\sqrt{s_{NN}}$ = 200 GeV data ~4B good events in total Only 327M events are used in study Trigger: Minimum-bias trigger

Vertex cuts:

 $V_r < 2 \text{ cm}$ -35 < $V_z < 25 \text{ cm}$ $|V_{z_TPC} - V_{z_VPD}| < 5 \text{ cm}$ Track selection: 0.15 GeV/c < $p_T < 5$ GeV/c $|\eta| < 1$ gDCA < 3 cm nHitsFit >= 15 nHitsDedx >= 10 nHitsFit/nHitsMax >= 0.52

Run18 Ru+Ru/Zr+Zr $\sqrt{s_{NN}} = 200 \text{ GeV}$ 1.8 0.8 0.6 0.4 0.2 -40 -20 20 80 n 100 V_z (cm) Run18 Ru+Ru/Zr+Zr √s_{NN} = 200 GeV = 10³ CCI. 10[€]

 V_{x} (cm)

Counts

PID technique

- Particle identification at high momentum region is challenging when using dE/dx or m^2 alone
- PID capability could be improved if TPC and TOF information are combined

$$m^2 = p^2 \left(\frac{c^2 T^2}{L^2} - 1 \right)$$

PID technique

Shift: Rotation: $\begin{pmatrix} x(n\sigma_{\pi}, m^2) \\ y(n\sigma_{\pi}, m^2) \end{pmatrix} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$ $f_{\text{scale}} = \sigma(n\sigma_{\pi})/\sigma(m^2(\pi))$ $x' = (n\sigma_{\pi} - \mu(n\sigma_{\pi}))/f_{scale}$ $\alpha = \tan^{-1} \left[\frac{\mu(m^2(K)) - \mu(m^2(\pi))}{\mu(n\sigma_K) - \mu(n\sigma_\pi)} \right]$ $y' = m^2 - \mu(m^2(\pi))$ 27 GeV, 0-80%, 2.2<p_<2.4 GeV/c (a) (b) 0.5 10⁴ 10³ m² (GeV/c²) 10^{3} y ($n\sigma_{\pi}$,m²) 0 10² 10² -0.5 10 10 2 -0.50.5 0 x $(n\sigma_{\pi}, m^2)$ $n\sigma_{\pi}$ STAR, PRC 88, 014902 (2013)

ϕ reconstruction

Kaon enriched samples are obtained by reconstructing ϕ mesons.

 $\phi \to K^+ + K^-$

- Like sign pairs were used to estimate background
- Apply an invariant mass window of (1.015,1.025), kaon candidates for ϕ in this mass window are saved as kaon enriched samples
- Fit $n\sigma_{\pi}$ and m^2 distribution of kaon enriched samples in different p_T regions

Rotation parameter for kaon enriched sample

STAR

K_s^0 reconstruction

Pion enriched samples are obtained by reconstructing K_s^0 .

Topological cuts	
Pion DCA	>0.7 cm
DCA between daughters	<0.8 cm
Decay length	>2.5 cm
K_s^0 DCA	>0.8 cm

- Apply an invariant mass window of (0.494,0.504), save pion candidates in this mass window
- Repeat the same procedure for kaon enriched samples to get rotation parameters vs. p_T

Rotation parameter for pure pion sample

- Multiple student's t functions are used to fit the projected distribution
- Bin counting method was used to extract raw yield when 0 < $p_{\rm T}$ <1 GeV/c
- Raw yield was extracted by fitting when $p_{\rm T}$ > 1 GeV/c

Raw p_T yields

- 2018 combined Ru+Ru/Zr+Zr $\sqrt{S_{NN}}$ = 200 GeV data was used
- Pion and kaon enriched samples are used for rotation parameter determination
- Raw $p_{\rm T}$ yields of identified particles are presented
- Outlook
 - Efficiency correction and systematic uncertainty study
 - Rapidity differential study
 - Compare to spectra in Au+Au and Cu+Cu collisions
 - Compare spectra for Ru+Ru and Zr+Zr with unblind data
 - Fit spectra to get freeze-out parameter

Back Up

PID technique

Shift:

$$f_{\text{scale}} = \sigma(n\sigma_{\pi})/\sigma(m^{2}(\pi))$$
$$x' = (n\sigma_{\pi} - \mu(n\sigma_{\pi}))/f_{\text{scale}}$$
$$y' = m^{2} - \mu(m^{2}(\pi))$$

Rotation:

$$\begin{pmatrix}
x(n\sigma_{\pi}, m^{2}) \\
y(n\sigma_{\pi}, m^{2})
\end{pmatrix} =
\begin{pmatrix}
\cos(\alpha) - \sin(\alpha) \\
\sin(\alpha) & \cos(\alpha)
\end{pmatrix}
\begin{pmatrix}
x' \\
y'
\end{pmatrix}$$

$$\alpha = tan^{-1} \left[\frac{\mu(m^{2}(K)) - \mu(m^{2}(\pi))}{\mu(n\sigma_{K}) - \mu(n\sigma_{\pi})} \right]$$

Kaon enriched sample

Rotation parameter extraction

nSigmaPion distribution for pure kaon sample fitted with student's t function in different p_T interval (-0.5<y<0.5)

Rotation parameter extraction

t function in different p_T interval (-0.5<y<0.5)