Analysis of fixed target collisions with the STAR detector

Brooke Haag for the STAR Collaboration Hartnell College / University of California, Davis Presented at the Meeting of the California Section of the APS November 3, 2012

Creating Mini-Big Bangs in the Lab

Goal: Use relativistic collisions of nuclei to create hot dense matter which reproduces the earliest stages of the universe

QCD phase diagram

• We have created a new state of matter at $\sqrt{(s_{NN})} = 200 \text{ GeV}$ consistent with the QGP !

- In 2010 and 2011 an extensive beam energy scan was undertaken at RHIC with a major goal to find the critical point.
- Fixed target collisions will extend the physics analysis to even lower \sqrt{s} .

STAR detector array STAR Magnet green tracks denote fixed EMC target event **Event Selection:** η=**q**.5 η=0.0 On Beampipe EEMC η=1.5 •1.5m<|Vz|<2.0m TPC BBC BBC η=2.0 FTPC FTPC Z (m) -3 -1 -2 +1 +2 0 ToF

Kinematic Calculations

Collision Energy (GeV)	Single Beam Energy	Single Beam P _z (GeV/c)	Fixed Target \sqrt{s}	Single Beam Rapidity	Center of Mass Rapidity
19.6 Au+Au	9.8	9.76	4.47 Au+Al	3.04	1.52
II.5 Au+Au	5.75	5.67	3.53 Au+Al	2.51	1.25
7.7 Au+Au	3.85	3.74	2.99 Au+Al	2.10	1.05

- √(s_{NN}) = center of mass energy
- $\sqrt{(s_{NN})} = \sqrt{(2m^2 + 2Em)}$ m = 0.9315 GeV/c²; E = 9.8 GeV

• $p_z = \sqrt{(E^2 - m^2)} = 9.76 \text{ GeV/c}$

rapidity (y)

• $y_{beam} = 0.5*[ln(E + p_z)/(E - p_z)]$

•
$$y_{beam} = 3.0$$

$$y_{cm} = 1.5$$

Particle identification via dE/dx

pion spectra for $\sqrt{(s_{NN})} = 3, 3.5, 4.5 \text{ GeV}$

efficiency corrections pending

STAR proton spectra for $\sqrt{(s_{NN})} = 3, 3.5, 4.5$ GeV Au+Al Invariant Proton Yield p Invariant Yield s_{NN} = 3.0 GeV p Invariant Yield s_{NN} = 3.5 GeV p Invariant Yield $\sqrt{s_{_{NN}}} = 4.5 \text{ GeV}$ STAR PRELIMINARY 10⁻¹ 0.2 0.3 0.5 0.7 0.4 0.6 0.8 0.1 $m_T - m_0$ (GeV)

• efficiency corrections pending

Conclusions and Outlook

- We have extracted pion and proton spectra for fixed target collisions with the STAR experiment via excellent particle identification in the TPC.
- Currently a fixed target program has approval. Installation in the next run. (See Daniel Cebra's talk)
- We have carried out fixed target physics with the STAR experiment; a paper is in the works!
- We **can** extend the search for the critical point to lower energies.

Backup Slides

Au+Al Event Selection

 Require z-vertex position on Al portion of beam pipe via geometric cuts

Sam Brovko

- Ensure Event is on the beam pipe
 - Require radial vertex position near beam pipe radius
 - Removes vertices on FTPC face and SVT support structures

Source Coulomb Potential

$$\frac{\pi^{+}}{\pi^{-}} (m_{T} - m_{\pi}) = R \frac{\exp\left[\left(E + V_{\text{eff}}\right)/T_{\pi}\right] - 1}{\exp\left[\left(E - V_{\text{eff}}\right)/T_{\pi}\right] - 1} \cdot J \quad \text{Ratio as a function of transverse kinetic energy with transformed B-E distribution}$$
$$J = \frac{E - V_{\text{eff}}}{E + V_{\text{eff}}} \frac{\sqrt{\left(E - V_{\text{eff}}\right)^{2} - m_{\pi}^{2}}}{\sqrt{\left(E + V_{\text{eff}}\right)^{2} - m_{\pi}^{2}}} \qquad \text{Jacobian of the transformation}$$
$$V_{\text{eff}} (\gamma_{\pi} \beta_{\pi}) = V_{C} \left(1 - e^{-E_{\max}(\gamma_{\pi} \beta_{\pi})/T_{p}}\right) \qquad \text{Effective Coulomb potential accounting for the reduced charge seen by low momentum } \pi$$
$$E_{\max} (\gamma_{\pi} \beta_{\pi}) = \sqrt{\left(m_{p} \gamma_{\pi} \beta_{\pi}\right)^{2} + m_{p}^{2}} - m_{p} \qquad \text{Maximum kinetic energy of the corresponding } \pi \text{ velocity}}$$

- Net positive charge in the collision zone
 - Expanding spherical source \rightarrow effective potential
- Coulomb potential (V_c) of the source modifies momentum distribution
 - Greater effect for low-momentum $\boldsymbol{\pi}$
- R primordial ratio from initial yields, unmodified by the coulomb source
- Extracted parameters include initial ratio R and the full coulomb potential V_c

The Basics

matter in the universe is

made of atoms

nucleus = protons + neutrons

THE STANDARD MODEL

mesons = 2 quarks baryons = 3 quarks

nucleons are hadrons (made of quarks)

STAR

The Relativistic Heavy Ion Collider

STAR has fixed target events

• gold beam ions collide with aluminum beam pipe atoms

• the events are asymmetrical

• acceptance is not optimal ...