

System Size and Shape Dependence of Anisotropic Flow

Niseem Magdy
STAR Collaboration
Stony Brook University

niseem.abdelrahman@stonybrook.edu

Outline

- I. Introduction
- i. Motivation
- ii. STAR Detector
- iii. Correlation function technique
- II. Results
- III. Conclusion

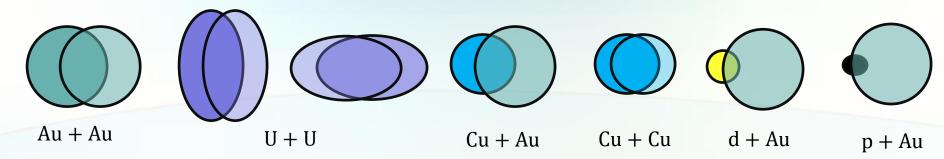
Motivation

- > Is the observed anisotropy in ion-ion collision a
 - ✓ Final state effect? E.g. viscous hydrodynamic-like expansion. or
 - ✓ Initial state effect? E.g. correlations of gluons present in the nucleon and nuclear wave functions.
- ➤ What are the essential differences between the medium created in small (p+A) and large (A+A) collision systems?

➤ Is there a limiting size to lose final state effects?

Motivation

Collected data for different systems;



- Viscous hydrodynamic-like expansion (Final state ansatz)
 - \checkmark v_n measurements for different systems are sensitive to system shape (ε_n) , size (RT) and transport coefficients $(\frac{\eta}{s}, \frac{\zeta}{s}, \dots)$.
 - Scaling out the system shape and size $\xrightarrow{\text{yields}} \left(\frac{\eta}{s}, \frac{\zeta}{s}, ...\right)$ effect on v_n for each system.

 $ln(v_n) = a\left(\frac{\eta}{s}\right)\left(\frac{dN}{d\eta}\right)^{\frac{-1}{3}} + ln(\varepsilon_n) + ln(b)$ arXiv:1305.3341

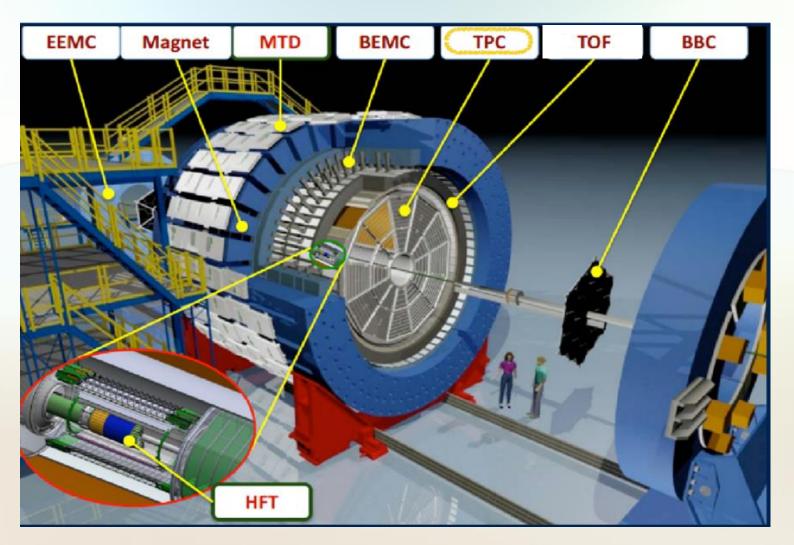
Roy A. Lacey, A. Taranenko, J. Jia, et al.

arXiv:1601.06001

Roy A. Lacey, Peifeng Liu, et al.

Scaling out the system size $\left(\frac{dN}{d\eta}\right)$ and shape (ε_n) should give the same transport coefficient $\left(\frac{\eta}{s}\right)$ (i.e. the same v_n) for different systems.

STAR Detector at RHIC



ightharpoonup TPC detector covers $|\eta| < 1$

Correlation function technique

- \triangleright All current techniques used to study v_n are related to the correlation function.
- \triangleright Two particle correlation function $Cr(\Delta \varphi)$ used in this analysis,

$$Cr(\Delta \varphi) = \frac{dN/d\Delta \varphi(same)}{dN/d\Delta \varphi(mix)}$$
 and $v_{nn} = \frac{\sum_{\Delta \varphi} Cr(\Delta \varphi) \cos(n \Delta \varphi)}{\sum_{\Delta \varphi} Cr(\Delta \varphi)}$ ALICE Collaboration

> Non-flow signals, as well as some residual detector effects (track merging/splitting) minimized with $\Delta \eta = |\eta_1 - \eta_2| > 0.7$ cut.

$$v_{nn}(p_T^a, p_T^t) = v_n(p_T^a) v_n(p_T^t)$$
 $n > 1$

 \checkmark Factorization ansatz for v_n (n > 1) verified.

$$v_{11}(p_T^a,p_T^t) = v_1^{even}(p_T^a)v_1^{even}(p_T^t) - C p_T^a p_T^t$$

PRC 86, 014907 (2012)
ATLAS Collaboration

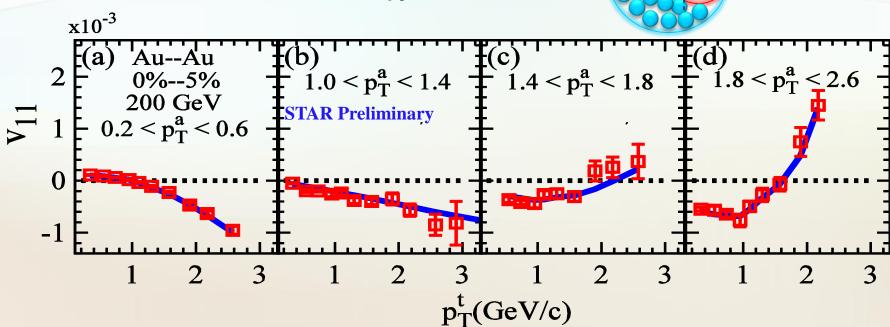
 \triangleright C is the momentum conservation parameter $C \propto \frac{1}{\langle Mult \rangle \langle p_T^2 \rangle}$

Dipolar Flow Simultaneous fit

$$v_{11}(p_T^a, p_T^t) = v_1^{even}(p_T^a)v_1^{even}(p_T^t) - C p_T^a p_T^t$$

4

- $\triangleright v_{11} \ Eq[4] \ represents \ N \times N \ matrix \ which \ we fit \ with \ N+1 \ parameters$
- ightharpoonup Dipolar nature require that $\int_0^\infty \frac{dN}{dp_T} p_T v_1^{even} = 0$



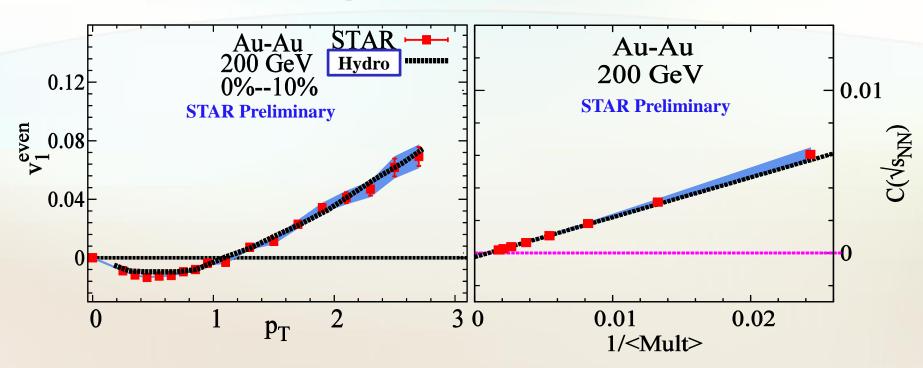
- > Good simultaneous fit obtained with fit function Eq[4].
- $\triangleright v_{11}$ characteristic behavior gives a good constraint for $v_1^{even}(p_T)$ extraction.

Dipolar Flow

$$v_{11}(p_T^a, p_T^t) = v_1^{even}(p_T^a)v_1^{even}(p_T^t) - C p_T^a p_T^t$$

4

The extracted $v_1^{even}(p_T)$ and the momentum conservation parameter C at 200 GeV

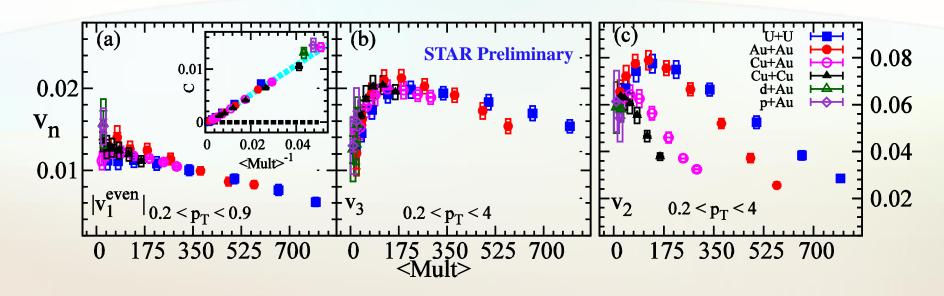


- The characteristic behavior of $v_1^{even}(p_T)$ in good agreement with the hydrodynamics calculations
 - \triangleright The momentum conservation parameter C scales as 1/<Mult>

$$v_n(Mult)$$
System size
 $|\eta| < 1 \text{ and } |\Delta \eta| > 0.7$

The multiplicity dependence of v_n for different systems

$$ln(v_n) = a\left(\frac{\eta}{s}\right)\left(\frac{dN}{d\eta}\right)^{\frac{-1}{3}} + ln(\varepsilon_n) + ln(b)$$



- \triangleright For a given n, $v_n(p_T)$ shows a similar trend for all systems.
 - $\succ v_1^{even}$ and v_3 are system independent (Same $\frac{\eta}{s}$).
 - $\triangleright v_2$ is system dependent.

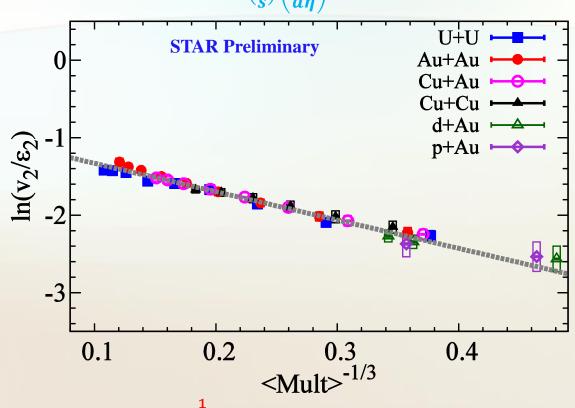
$$v_n(Mult)$$

System size and shape

 $|\eta| < 1$ and $|\Delta \eta| > 0.7$

 $\frac{v_2}{\epsilon_2}$ mean multiplicity dependence for all systems

$$ln(v_n) = a\left(\frac{\eta}{s}\right)\left(\frac{dN}{d\eta}\right)^{\frac{-1}{3}} + ln(\varepsilon_n) + ln(b)$$



- $> v_{\rm n} (< Mult >^{-\frac{1}{3}})$ for all systems scales to a single curve.
 - \triangleright Same $\frac{\eta}{s}$ for all systems.

III. Conclusion

Comprehensive set of STAR measurements for $v_n(Mult)$ of different systems are presented.

- > Scaling the system size;
 - \checkmark The odd harmonics v_1^{even} and v_3 are shape independent
 - $\checkmark \frac{v_2}{\epsilon_2}$ for all systems scaled onto one curve
 - ✓ Viscous hydrodynamic-like expansion ansatz holds for presented systems

> Scaling features suggest that all presented systems have similar transport coefficient $(\frac{\eta}{s})$ at $\sqrt{s_{NN}} \sim 200 \ GeV$.

III. Conclusion

The initial questions answer?

- ➤ Is the observed anisotropy in heavy ion collision final- or initial state effect?
 - ✓ Final state ansatz holds for presented systems
- ➤ What are the essential differences between the medium created in small (p+A) and large (A+A) collision systems?
 - ✓ Size and shape are system dependent.
 - ✓ Scaled results suggest similar $(\frac{\eta}{s})$ for p+Au, d+Au, Cu+Cu, Cu+Au, Au+Au and U+U.
 - ➤ Is there a limiting size to lose final state effects?
 - ✓ All presented systems remain within the final state effect.

