

Event-plane dependent away-side jet-like correlation shape in AuAu collisions at $\sqrt{s_{NN}} = 200$ GeV from STAR

Liang Zhang (for the STAR collaboration)

Central China Normal University & Purdue University

Outline

> Motivation

- **≻**Methodology
 - \triangleright Jets selection large recoil transverse momentum (P_x)
 - >Flow background subtraction
- ➤ Event-plane reconstruction with Beam-Beam Counters
- > Results
 - Event-plane dependent jet-like correlations
 - ➤ Unfolding methodology for event-plane resolution

Motivation

> Jets are modified in relativistic heavy-ion collisions due to jet-medium interactions.

➤ In-medium path length that recoil (away-side) parton traverses is expected to depend on its emission angle w.r.t. the event-plane in noncentral Au+Au collisons.

Jets selection

 P_x : Recoil transverse momentum (projection of away-side p_T onto trigger axis).

$$P_{x} \mid_{\eta_{1}}^{\eta_{2}} = \sum_{\eta_{1} < \eta < \eta_{2}, |\varphi - \varphi_{trig}| > \frac{\pi}{2}} p_{T} cos(\varphi - \varphi_{trig}) \frac{1}{\epsilon}$$

 ϵ : single-particle acceptance efficiency.

For each centrality, cut on the left tail of the distribution (10% of events) to enhance the away-side jet population.

Flow background subtraction

• Two-particle correlation

Select events with a large P_x in a given η window from a high- p_T trigger particle to enhance away-side jet population.

Analyze two-particle correlation in close-region and far-region respectively.

Flow contributions to close region and far region are equal.

Close-region 2p corr.=flow + near-side jet + away-side jet * fraction_close

Far-region 2p corr. =flow + near-side jet + away-side jet * fraction_far

BBC event-plane Ψ_2 determination

A large η gap between BBCs and midrapidity region.

The correlation between trigger particles and BBC Ψ_2 can be eliminated effectively.

$$Q_{2x} = \sum_{i} w_{i} \cos(2\phi_{i}), Q_{2y} = \sum_{i} w_{i} \sin(2\phi_{i}),$$

Here w_i calculated from ADC signals, where

$$w_i = \frac{A_i}{\sum A_i}.$$

$$\Psi_2 = (\tan^{-1} \frac{Q_{2y}}{Q_{2x}})/2.$$

Raw results

Run11 Au
Au 20-60%, 3 < $p_{\mathrm{T}}^{\mathrm{trig}}$ < 10 GeV/c, 1 < $p_{\mathrm{T}}^{\mathrm{assoc}}$ < 2 GeV/c

• Close-region

Far-region

Different panels give the two-particle jet-like correlation with trigger particles in different ϕ_s regions. We couldn't see a clear difference in correlation shape due to the poor resolution of Ψ_2^{BBC} .

Can we obtain the true correlation in different ϕ_s regions? Resolution correction? Unfolding?

Resolution correction (Unfolding)

(a)
$$g_{0} = \frac{40 \times 10^{6}}{35}$$
— Diluted ($\Delta \Psi_{2}$)
— Measured
— True (res. corr.)

 $g_{0} = \frac{14}{13}$
— True (res. corr.)

 $g_{0} = \frac{14}{13}$
— $g_$

$$\frac{\mathrm{dN}}{\mathrm{d}\phi_{\mathrm{s}}} \propto \left(1 + \frac{2\mathrm{v}_2}{\mathcal{R}}\cos(2\phi_{\mathrm{s}})\right),$$

APS April Meeting 2018

 ϕ_s : The separate angle between trigger particles and EP.

$$f(\chi, \Delta \Psi_2) = \frac{1}{\pi} \left[e^{-\frac{\chi^2}{2}} + \sqrt{\frac{\pi}{2}} \chi(\cos 2\Delta \Psi_2) e^{-\frac{\chi^2 \sin^2 2\Delta \Psi_2}{2}} \left(1 + \text{erf}\left(\frac{\chi \cos 2\Delta \Psi_2}{\sqrt{2}}\right) \right) \right],$$
 and $\chi = \mathcal{R}/\sqrt{\frac{\pi}{8}}$.

S. Voloshin, Y. Zhang, Z. Phys. C 70 (1996)665

Resolution correction (Tunfold)

- ➤ (a) and (b) are filled by the data generated by MC.
- ➤ 2D histogram (c) is regarded as the "probability matrix". boxes for each row of y can be understood as the probability to migrate to the bin of x.
- We again use (a) but as the input. We can obtain the output (d)
- ➤ The number of bins after unfolding is half of the input.

Summary

- ➤ We adopted a data-driven method for subtracting flow background. (No assumptions on flow background shape and amplitude)
- We have reported a measurement of two-particle jet-like correlation shape relative to a high- p_T trigger particle (3 < $p_T^{\rm trig}$ < 10 GeV/c) in 200 GeV AuAu collisions.
- ➤ The 2nd-order event-plane in our analysis is reconstructed with BBC. (Significantly eliminate the correlation between EP and trigger particles)
- We have studied the two-particle jet-like correlation shape for trigger particles in different ϕ_s regions.
- > We are going to correct for the EP resolution via an unfolding procedure.