Determining sampled luminosity in proton-proton collisions at √s=500GeV at STAR using the vernier scan technique Ross Corliss (MIT) on behalf of the STAR collaboration

Outline

- The vernier scan technique
- Details of the vernier scans at STAR
- Computing luminosity
- Application to W cross section
- Conclusions

Rate in a Circular Collider

The Vernier Scan Technique

$R = \sigma f_{rev} \Sigma_i \int dA \frac{dN_{1i}}{dA} (x, y) \frac{dN_{2i}}{dA} (x + \Delta x, y + \Delta y)$

 $\mathcal{L} = -$

Vernier Scan Model

- Event rate is a function of the cross section and the overlap integral of colliding beams
- Assuming gaussian beam profiles,

The Barrel Calorimeter

- Barrel calorimeter
 -1<η<1 with 4800
 towers
- Barrel High Tower 3 (BHT3) trigger required 13 GeV transverse energy in a single tower

Barrel Calorimeter

Vernier Scans at STAR

Ross Corliss (MIT)

Checking the Background

Ross Corliss (MIT)

Cross Section Results

 Correcting for small variation of the BHT3 efficiency in each of the two runs, the final average cross section for the BHT3 is:

$\sigma_{BHT3} = 481 \,\mathrm{nb} \pm 10(\mathrm{stat}) \pm 110\,(\mathrm{syst})$

 The largest contribution to the systematic error (60nb) comes from non-gaussianity in the tails of the vernier scan data.

Computing Luminosity

- In each run that included the BHT3 trigger, we determine the background rate by scaling the event rate in the abort gaps
- Background-subtracted event rate is then corrected for rundependent efficiency
- Scaling by I/σ_{внт3} yields the luminosity per run in pp500

Application to W Cross Section

 This luminosity will now be used to compute the first W cross section at 500GeV

(See talk by Justin Stevens, XII.00009: Measurement of the Cross Section for W Boson Production at $\sqrt{s}=500$ GeV at STAR)

Ross Corliss (MIT)

Conclusions

- The vernier scan technique was successful in determining the BHT3 trigger cross section
- Crucial component of the W cross section
- Better modeling of the beam profile should reduce systematic uncertainty.
- Technique can be extended to any desired STAR trigger for future runs