Study of Λ-Λ correlations with STAR Detector at RHIC

Neha Shah For the STAR collaboration

Outline

- Introduction
- Two particle correlations
- $\Lambda\Lambda$ correlations and H dibaryon
- Overview of STAR detector
- Analysis details & results
- Summary

Introduction

- * Two particle correlation function, $R(p_{rel})$ are sensitive to the size r_0 of the emitting region.
- * Correlation functions with Λ
 - \rightarrow no Coulomb interactions
 - \rightarrow Sensitive to hyperon-hyperon interactions
 - \rightarrow Shed some light on possiblity of H (uuddss) formation

Two Particle Correlation Function

The two particle Correlation Fuction

$R(Q) = -0.5*exp(-Q^2r^2)$

Where Q is relative momentum between two Λ and λ is degree of incoherence of the source

H dibaryon

- * Six quark state (uuddss)*
- * Properties : $J^{\pi} = 0^+$, mass (1.2-2.8) GeV/c²
- * Depending on the mass we have different decay modes of H:

	Channel	Threshold Mass (GeV/c²)	ΔS	
	ΛΛ	2.231	0	Possible to look with STAR
	$\Lambda N\pi$	2.192	1	
	ΝΝππ	2.152	2	
	Σn	2.134	1	
	Λn	2.055	1	
	ΝΝπ	2.016	2	
	nn	1.879	2	* Dby Doy Lott 29 (1077) 105
2(011			5 5

H^0 in Λ - Λ correlations

Influence of possible low energy resonance on Λ - Λ correlations.

H^{0} in Λ - Λ correlations

STAR Detector

Time projection Chamber (TPC), Time of Flight helps in particle identification

E-M calorimeter helps in measuring energy

Silicon Vertex Tracker and upVPD helps in tagging the vertex and event trigger

Λ reconstruction

 $\Lambda \rightarrow p\pi$ Mass = 1.1156 GeV Branching ratio = 63% Mean Life time $\tau = 2.63 \times 10^{-10}$ s, $c\tau = 7.89$ cm

To reconstruct Λ select pair of proton and pion from the particle identification (PID) plot generated using dE/dx and charge*momentum(q*p) information from the TPC.

Λ reconstruction

Correlation Function

The two particle Correlation Fuction (CF)

CF(Q) = A(Q)/B(Q)

Where Q is relative momentum between two Λ

A(Q) the relative momentum distribution generated by taking pair from same event and B(Q) is the reference distribution generated by mixing two particles from different events

Correlation Function

Results

Fit function:

 $CF(Q) = 1 + p_0 exp(-Q^2 p_1^2)$

Summary

- * The first measurement of correlations for $\Lambda\Lambda$ at $\sqrt{S_{NN}}$ = 39 GeV are presented.
- * The source size is estimated to be 1.01 \pm 0.19_{stat} fm
- * The possiblities to look for H⁰ with STAR at RHIC are discussed

Outlook

* Analysis from $\sqrt{S_{NN}} = 200 \text{ GeV}$ is in progress

* Look for the Λ $p\pi$ channel for $H^{\scriptscriptstyle 0}$ signal

Thank you

Backup