1	Energy dependence of triangular flow for identified hadrons in
2	Au+Au collisions at $\sqrt{s_{NN}} = 14.5 - 62.4$ GeV from the STAR
3	experiment
4	Author: Alexey Povarov (for the STAR Collaboration)
5	National Research Nuclear University MEPhI, Moscow, Russia
6	Heavy-ion collisions create matter which is characterized by high temperature
	and operate density called Quark Cluon Plasma (OCP). One of the methods for

and energy density, called Quark-Gluon Plasma (QGP). One of the methods for studying the transport properties and equation of state of the created matter is 8 the measurement of azimuthal anisotropy of particles using the Fourier expansion a of the azimuthal angle with respect to the event plane. The second order Fourier 10 coefficient v_2 is called elliptic flow and is sensitive to the pressure gradients arising 11 in the region of overlapping nuclei. The third order coefficient v_3 (triangular flow) 12 is sensitive to the fluctuations of nucleons in the initial state of colliding nuclei and 13 therefore v_3 weakly depends on the collision centrality. Theoretical studies show 14 that v_3 is more sensitive to viscous effects than v_2 , making triangular flow an ideal 15 harmonic for studying the viscosity. 16

This work is devoted to the study of triangular flow in a wide energy range of Au+Au collisions from the STAR experiment at RHIC ($\sqrt{s_{NN}} = 14.5$, 19.6, 27, 39, 62.4 GeV). New measurements of triangular flow will be presented as a function of particle transverse momenta (p_T) and collision energy. Physics implications will be discussed.