Study of elliptic and triangular flow of identified particles in Au+Au collisions $\sqrt{s_{NN}} = 11.5 - 62.4$ GeV in the STAR experiment

Alexey Povarov for the STAR Collaboration

National Research Nuclear University MEPhI

International School on Nuclear Physics and Engineering NPhE-2020 Moscow (Russia), Nov. 19-20, 2020

Outline

- Introduction
- Anisotropic flow at RHIC
- The STAR detector at RHIC
- Analysis methods
- Results
- Summary and Outlook

Anisotropic collective flow at RHIC/LHC

 $v_n(\mathbf{p_T}, \mathbf{centrality})$ - sensitive to the early stages of collision. Important constraint for transport properties: EOS, η/s , ζ/s , etc.

Mass ordering at p_T < 2 GeV/c (hydrodynamic flow, hadron rescattering)

Baryon/meson grouping at $p_T > 2$ GeV/c (recombination/coalescence), Number of constituent quark (NCQ) scaling

Anisotropic collective flow at STAR BES

Taranenko, EPJ Web Conf. 204 (2019) 03009

- Small change in $v_2(p_T)$ for Au+Au $\sqrt{s_{NN}}$ = 7.7 62.4 GeV (STAR BES-I)
- Strong energy dependence of the difference in v_2 of particles and antiparticles
- Our aim is to measure $v_3(\sqrt{s_{NN}}, \text{centrality,PID}, p_T)$

The STAR detector at RHIC

Time Projection Chamber (TPC):

- Tracking of charged particles with $|\eta| < 1$, 2π in φ .
- PID using dE/dx measurements

Time-Of-Flight (TOF):

- |η| < 0.9, 2π in φ
- PID using time-of-flight information **Event planes:**

TPC ($|\eta| < 1$), BBC (3.8 < $|\eta| < 5.2$) Data set:

Au+Au at $\sqrt{s_{NN}}$ = 11.5 - 62.4 GeV

Analysis technique: Event Plane Method (EP)

Used the same method as in Phys. Rev. C 88 (2013) 14902

$v_2(p_T)$ and $v_3(p_T)$ of identified hadrons

NCQ scaling of v_2 and v_3

- NCQ scaling tests were performed for v_2 and v_3 for particles and antiparticles
- Scaling holds better for higher energies

Beam-energy dependence of v_2 and v_3 particle-antiparticle difference

- Differences for v_2 and v_3 between particles and antiparticles increase with decreasing beam energy
- $v_n(p) v_n(\bar{p})$ shows growth with decreasing collision energy
- Absolute value of $v_n(X) v_n(\bar{X})$ is larger for (p, \bar{p}) than for π^{\pm}, K^{\pm}

Summary

Results of v_2 , v_3 in Au+Au collisions at BES energies $\sqrt{s_{NN}}$ = 11.5 - 62.4 GeV are presented.

($\sqrt{s_{NN}}$, centrality, PID, p_T)-dependence of v_2 and v_3 :

- Mass ordering for $p_T < 1.5$ GeV/c and baryon/meson grouping for $p_T > 2$ GeV/c
- NCQ scaling holds better for higher energies

 $v_n(X)-v_n(ar{X}):$

- The difference increases with decreasing collision energy
- $v_n(p) v_n(\bar{p})$ shows growth at lower collision energies
- Absolute value of $v_n(X) v_n(\bar{X})$ is larger for (p, \bar{p}) than for π^{\pm}, K^{\pm}

Backup slides

Anisotropic collective flow

Initial eccentricity (and its attendant fluctuations), ϵ_n , drives momentum anisotropy, v_n , with specific viscous modulation

