Supported in part by

Scaling of collective flow of charged and identified hadrons in Au+Au collisions at $\sqrt{s_{_{NN}}} = 11.5 - 62.4$ GeV from the STAR experiment

Alexey Povarov for the STAR Collaboration

National Research Nuclear University MEPhI

LXXI International conference "NUCLEUS – 2021. Nuclear physics and elementary particle physics. Nuclear physics technologies"

St. Petersburg (Russia), 20-25 September 2021

Outline

- Introduction
- Anisotropic flow at RHIC
- The STAR detector at RHIC
- Analysis methods
- Results
- Summary and Outlook

Anisotropic collective flow at RHIC/LHC

 $v_n(\mathbf{p}_T, \mathbf{centrality})$ - sensitive to the early stage of nuclear collisions. Important constraints for transport properties: EOS, η/s , ζ/s , etc.

Mass ordering at $p_T < 2 \text{ GeV/c}$ (hydrodynamic flow, hadron rescattering)

Baryon/meson grouping at $p_T > 2 \text{ GeV/c}$ (recombination/coalescence), Number of constituent quark (NCQ) scaling

Anisotropic collective flow at RHIC Beam Energy Scan

- Small change in $v_2(p_T)$ in Au+Au collisions above $\sqrt{s_{NN}} = 7.7 \text{ GeV}$
- Strong energy dependence of the difference in v_2 of particles and antiparticles

• Our aim is to measure and study the systematics of $v_3(\sqrt{s_{NN}}, \text{ centrality}, \text{PID}, p_T)$ Alexey Povarov NUCLEUS-2021

The STAR detector at RHIC

Time Projection Chamber (TPC):

- Tracking of charged particles with |η| < 1, 2π in φ.
- PID using dE/dx measurements Time-Of-Flight (TOF):
 - |η| < 0.9, 2π in φ
 - PID using time-of-flight information

Event planes: TPC ($|\eta| < 1$) Data set: Au+Au at $\sqrt{s_{_{NN}}} = 11.5 - 62.4 \text{ GeV}$ RHIC beam energy scan phase one

Analysis technique: Event Plane Method (EP)

$v_2(p_T)$ and $v_3(p_T)$ of charged hadrons as p_T function

 $arphi_n^{ ext{int}} = \int arphi_n(\mathbf{p}_{ ext{T}}) \mathrm{d}\mathbf{p}_{ ext{T}}$ $0.2 < \mathrm{p}_{ ext{T}} < 3.2 \ ext{GeV/c}$

- Elliptic flow is more dependent on centrality than triangular flow
 - Similar shape of p_T dependence of normalized v_2 and v_3 for all centralities and beam energies

Beam-energy dependence of v_2 and v_3

 p_{τ} -dependent efficiency was not applied

$v_2(p_T)$ and $v_3(p_T)$ of identified hadrons

Mass ordering for $p_T < 1.5 \text{ GeV/c}$ Baryon/meson grouping for $p_T > 2 \text{ GeV/c}$

NCQ scaling of v_2 and v_3

• NCQ scaling tests were performed for v_2 and v_3 for particles and antiparticles

(b)

(d)

(m)[.]

1.5

 Scaling holds better at higher energies

$v_2(p_T)$ and $v_3(p_T)$ of identified hadrons: positive

• Similar shape for p_T dependence of normalized v_2 and v_3 for positive particle species Alexey Povarov NUCLEUS-2021

$v_2(p_T)$ and $v_3(p_T)$ of identified hadrons: negative

• Similar shape for p_T dependence of normalized v_2 and v_3 for negative particle species Alexey Povarov NUCLEUS-2021

Beam-energy dependence of v_2 and v_3 particle-antiparticle difference

- Differences for v_2 and v_3 between particles and antiparticles increase with decreasing beam energy
- Absolute value of particle-antiparticle difference is larger for proton and antiproton than for $\pi^{\pm},\,K^{\pm}$

Alexey Povarov NUCLEUS-2021

Summary

Results of v_2 and v_3 in Au+Au collisions at BES energies $\sqrt{s_{NN}} = 11.5 - 62.4$ GeV are presented.

Systematics of of v_2 and v_3 with $\sqrt{s_{NN}}$, centrality, PID and pT:

- Normalized v_2 and v_3 have similar p_T shape for all centralities and beam energies for each particle species
- Mass ordering for $p_T < 1.5$ GeV/c and baryon/meson grouping for $p_T > 2$ GeV/c
- NCQ scaling holds better for higher energies

 $v_n(X)-v_n(ar{X}):$

- The difference increases with decreasing collision energy
- Absolute value of $v_n(X) v_n(\bar{X})$ is larger for (p, \bar{p}) than for π^{\pm}, K^{\pm}

Backup slides

Anisotropic collective flow

Initial eccentricity (and its attendant fluctuations), ε_n , drives momentum anisotropy, v_n , with specific viscous modulation

Events selection

Au+Au	Vz , cm	Vr , cm	∆∨у, см	Before cuts	After cuts
Run10 11.5 GeV	< 50	< 2	0.0	12M	10M
Run14 14.5 GeV	< 70	< 1	-0.89	28M	24M
Run11 19.6 GeV	< 70	< 2	0.0	25M	21M
Run10 27 GeV	< 70	< 2	0.0	74M	62M
Run18 27GeV	< 70	< 2	0.0	550M	460M
Run10 39 GeV	< 40	< 2	0.0	126M	105M
Run10 62.4 GeV	< 40	< 2	0.0	56M	47M