

Beam energy dependence of light nuclei (d, t)productions in Au+Au collisions at RHIC

Ning Yu for the STAR Collaboration

Xinyang Normal University Central China Normal University

Outline

☆ Introduction

☆ The STAR Experiment

☆ Results

☆ Summary and Outlook

QCD Phase Diagram

✓ Critical Point and Phase boundary

N.Yu

✓ Possible New Phase structure : Quarkyonic Matter

N.Yu

The 7th Asian Triangle Heavy-Ion Conference (ATHIC 2018)

Light Nuclei Formation in HI Collisions

Coalescence Model : small binding energy (ε), such as d and \bar{d} with binding energy $\varepsilon = 2.2$ MeV, formed via final-state coalescence $E_A \frac{d^3 N_A}{dp_A^3} = B_A \left(E_p \frac{d^3 N_p}{dp_p^3} \right)^Z \left(E_n \frac{d^3 N_n}{dp_n^3} \right)^{A-Z} \approx B_A \left(E_p \frac{d^3 N_p}{dp_p^3} \right)^A$, $p_A = A p_p$

Light nuclei produced at the chemical freeze-out might break up and reform between the chemical freeze-out and the kinetic freeze-out.

 $B_A \propto V_f^{1-A}$

László P. Csernai, Joseph I. Kapusta Phys. Reps, 131,223(1986) B. Monreal, *et. al.* PRC60,031901(1999), PRC60,051902(1999)

Light Nuclei Formation in HI Collisions

Light Nuclei Formation in HI Collisions

Thermal Model : emitted at chemical equilibrium, yield fixed at chemical freeze-out for all hadrons

$$N_i = \frac{g_i V}{2\pi^2} m_i^2 T_{ch} K_2 \left(\frac{m_i}{T_{ch}}\right) e^{\mu_i / T_{ch}}$$

A. Andronic, P. Braun-Munzinger, J. Stachel and H. Stoecker, PLB697, 203 (2011),

Light nuclei may serve as probes of space-momentum density and correlation of nucleons at freeze-out.

RHIC Beam Energy Scan

★ BES-I Au+Au collisions at $\sqrt{s_{NN}} = 7.7$, 11.5, 14.5, 19.6, 27, 39 and 62.4 GeV

- ✓ Search for conjectured QCD critical point
- ✓ Search for the first-order phase transition
- ✓ Search for the onset of key QGP signatures

STAR :arxiv 1007.2613

$\sqrt{s_{\rm NN}}$ (GeV)	7.7	11.5	14.5	19.6	27	39	62.4	200
N _{eve} (M)	4	11	27	40	71	133	67	480
μ_B (MeV)	420	315	260	205	155	115	72	20

J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton PRC 73,034905 (2006)

The Solenoidal Tracker At RHIC

Time Projection Chamber (TPC)

- * Charged Particle Tracking
- ★ Momentum reconstruction
- ☆ Particle identification by ionization energy loss (dE/dx)
- * Pseudorapidity coverage $|\eta| < 1.0$

The 7th Asian Triangle Heavy-Ion Conference (ATHIC 2018)

The Solenoidal Tracker At RHIC

Time Of Flight (TOF)

- ★ Particle identification m²
- * Pseudorapidity coverage $|\eta| < 0.9$

Transverse Momentum Spectra

- ★ Midrapidity ($|y| \le 0.3$) transverse momentum distribution of $d(\bar{d})$ from Au+Au Collisions
- ★ Midrapidity ($|y| \le 0.5$) transverse momentum distribution of *t* from Au+Au Collisions
- ★ Dash line: blast-wave function fits

$$\frac{\mathrm{d}^2 N}{p_T dp_T} \propto \int_0^R r \mathrm{d} r m_T I_0 \left(\frac{p_T \mathrm{sinh}\rho}{T}\right) K_1 \left(\frac{m_T \mathrm{cosh}\rho}{T}\right) \qquad \rho = \mathrm{tanh}^{-1} \left(\beta \frac{r}{R}\right)$$

E. Schnedermann, J. Sollfrank, and U. Heinz, PRC 73,034905 (2006)

Integral Yield dN/dy

- dN/dy for d and t is smaller at higher energy: baryon stopping
- dN/dy for \bar{d} increases with increasing energy: baryon pair production
- N_{part} scaled dN/dy for \overline{d} show weak centrality dependence, for d increase slightly from peripheral to central collisions

$\langle p_T \rangle$

Particle Ratios

- * $N(\bar{d})/N(d)$ decreases with decreasing energy
- * $N(\bar{d})/N(d)$ ratio decreases as a function of collision centrality
- * Thermal model can describe $N(\bar{p})/N(p)$ and $N(\bar{d})/N(d)$ in a wide energy range.
- * The d/p ratios from thermal model prediction are consistent with the data from SIS up to LHC energies.

The lines are from thermal model prediction A. Andronic, P. Braun-Munizinger, J. Stachel, H. Stöcker, PLB697 (2011)203

d/p^2 and $\overline{d}/\overline{p}^2$ Ratios

* In thermal model with GCE (grand canonical ensemble), d/p^2 and \bar{d}/\bar{p}^2 should be the same if isospin effect can be neglected

$$\frac{\mu_Q}{T} = \frac{1}{2} \ln \left(\frac{\bar{d}/\bar{p}^2}{d/p^2} \right)$$

* The μ_Q/T can also be obtained by

$$\frac{\mu_Q}{T} = \frac{1}{2} \ln \left(\frac{\pi^+}{\pi^-} \right)$$

- ★ The results from π are closer to zero than those from d/p^2 .
 - strong-decay contribution to π and p
 - non-thermalization

NA49, PRC 94, 044906 (2016)

B_2 v.s. m_T and Collision Centrality

$$B_2 = a \cdot \exp[b(m_T - m)]$$

NA44, EPJ C. 23, 237 (2002)

- * The values of B_2 increase as a function of m_T and decreases with collision centrality : collective expansion
- * $B_2(\overline{d})$ are smaller than that of $B_2(d)$, anti-baryon freeze-out at a larger source

N.Yu

Coalescence Parameters vs. Collision Energy

★ B_2 decreases with collision energy. A minimum around $\sqrt{s_{NN}} = 20$ GeV : **change of EOS**?! ★ $B_2(\overline{d})$ values are systematically lower than that of $B_2(d)$ implying emitted source of antibaryons is larger than those of baryons.

N.Yu

B_2 and $\sqrt{B_3}$

- ★ B_2 and $\sqrt{B_3}$ are consistent within uncertainties except 200 GeV.
- ☆ Different production mechanism for *d* and *t* at 200 GeV ?
- Competition of thermal production and coalescence production?

Nucleon Relative Density Fluctuation

The particle ratios of light nuclei is sensitive to the nucleon density fluctuation at kinetic freeze-out.

(Caution: This conclusion is based on coalescence model)

The 7th Asian Triangle Heavy-Ion Conference (ATHIC 2018)

Summary

- ★ STAR systematic results of $d(\bar{d})$ and t production $(dN/dy, \langle p_T \rangle)$ from Au + Au collisions at $\sqrt{s_{NN}} = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4$ and 200 GeV
- ★ Coalescence parameter B_2 for d and \overline{d} are extracted. $B_2(d)$ and $B_2(\overline{d})$ are found to be different in the most central collisions for the first time.
- ★ Similar to the pion HBT and net-proton high moments, around $\sqrt{s_{NN}} = 20$ GeV, B_2 reaches a minimum suggesting the change of EOS around the energy.
- ★ B_2 and $\sqrt{B_3}$ are consistent within uncertainties except 200 GeV.
- * Neutron density fluctuation Δn shows a non-monotonic behavior on collision energy.