Study of the nuclear deformation in relativistic isobar collisions at STAR

Chunjian Zhang (for the STAR Collaboration)

Stony Brook University

Collective phenomena in heavy-ion collisions are very sensitive to initial geometry including nuclei deformation effects. In the hydrodynamic model description of heavy-ion collisions, the final-state anisotropic flow v_n are linearly related to the strength of the multi-pole shape of the nucleon density distribution in the transverse plane ϵ_n , $v_n \propto \epsilon_n$. The ϵ_n are sensitive to the shape of the colliding ions, characterized by nuclear deformation. Results on the v_n from various collision systems measured with the STAR detector will be presented. The precise calculations with Monte-Carlo Glauber [1] and a multi-phase transport (AMPT) model [2, 3] could be helpful to understand the role of the shape of atomic nuclei in heavy-ion collisions.

10

^[1] Jiangyong Jia, arXiv:2106.08768.

^[2] Giuliano Giacalone, Jiangyong Jia and Chunjian Zhang, arXiv:2105.01638.

^[3] Chunjian Zhang and Jiangyong Jia, arXiv:2109.01631.