

$^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H directed flow measurements in $\sqrt{s_{NN}}$ = 3 GeV Au+Au collisions from STAR

张亚鹏 (Yapeng Zhang), for STAR collaboration

Institute of Modern Physics, CAS

InCheon, South Korea

5-9, Nov. 2021

Outline

1) Motivation

- 2) STAR Detector System for Fixed-target Runs
- 3) $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H Reconstruction
- 4) Directed flow of ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$
- 5) Summary

1. Hyper-Nuclei and YN interaction

Hyper-nucleus: bound state of the hyperon(s) and nucleons.

Study on hyper-nuclei (i.e. lifetime, binding energy, decay BR.) provides valuable information of hyperon-nucleon (YN) interactions.

Binding energy of Λ Hypernuclei:

YN-interaction and Neutron Star

"Hyperon puzzle" : the difficulty to reconcile the measured masses of neutron stars (NSs) with the presence of hyperons in their interiors. Interactios of ΛN and ΛNN may be important! [Ignazio Bombaci, JPS Conf. Proc. 17, 101002 (2017)]

Other "hyperon puzzle" solutions: quark star, dark matter, A. D. Popolo et al, Phys. Dark Universe 28, 100484 (2020);

Yapeng Zhang

Hyper-nuclei Productions in Heavy Ion Collisions (HICs)

A. Andronic et al., Phys. Lett. <u>B697</u>, 203(2011); J. Steinheimer et al., Phys. Lett. <u>B714</u>, 85(2012)

Collective motion of baryonic matter is driven by the pressure gradient. Flow of hyper-nuclei may shed light on YNinteraction in condensed nuclear matter.

Yapeng Zhang

2. Fixed Target Setup at STAR

RHIC Beam Energy BES-II in 2018-2021:

➢ Fixed Target Run extends collision energy down to : $√s_{NN} = 3 - 7.7$ GeV corresponding to baryon chemical potential: $750 \ge \mu_B \ge 420$ MeV

Charged Hadron PID and ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H Reconstruction

STAR TPC Particle Identification

2018 STAR FXT 3 GeV data set;
260M minimum biased events
1) PID of p, d, t, ³He, ⁴He, π⁻ is made based on the dE/dx vs p/q distribution;

2) Hyper-nuclei reconstruction channels:

 ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-} 2\text{-body}$ ${}^{3}_{\Lambda}H \rightarrow p + d + \pi^{-} 3\text{-body}$ ${}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-} 2\text{-body}$

KFParticle: Reconstruction of Short-lived Particles

Concept and features:

- Based on Kalman Filter (KF)
- Tracking and detector performance contained in Covariance matrix
- Geometry independent and Vectorized
- Natural and simple interface
- Large particle reconstruction database

Charged particles: e[±], µ[±], π[±], K[±], p[±], d[±], ³He[±], ⁴He[±] Neutral particles: v_{μ} , \overline{v}_{μ} , π^{0} , n, \overline{n} , Λ , $\overline{\Lambda}$, Ξ^{0} , $\overline{\Xi}^{0}$ Strange particles Dileptons Open-charm Hypermatter $K_{*}^{0} \rightarrow \pi^{+} \pi^{-}$ Charmonium Open-charm Hypernuclei $K^+ \rightarrow \mu^+ v_{\mu}$ $J/\psi \rightarrow e^+e^$ particles $\{An\} \rightarrow d^{+}\pi^{-}$ $\begin{array}{c} \Xi^{*} \to \Lambda \pi^{*} \\ \Xi^{*} \to \overline{\Lambda} \pi^{*} \end{array}$ $J/\psi \rightarrow \mu^+ \mu^ K_{\bar{\tau}} \rightarrow \mu_{\bar{\tau}} \overline{\nu}_{\mu}$ $D^0 \rightarrow K \cdot \pi^+$ $\{\overline{\Lambda}\overline{n}\} \rightarrow d \pi^+$ $K^+ \rightarrow \pi^+ \pi^0$ $D^0 \rightarrow K^{-}\pi^{+}\pi^{+}\pi^{-}$ $\{Ann\} \rightarrow t^+\pi^-$ Low mass $\frac{\Xi^{+}}{\Xi^{+}} \rightarrow \overline{\Lambda} \frac{\pi^{-}}{\pi^{+}}$ $\begin{array}{ccc} \underline{\Sigma}^+ & \to \underline{p} \ \pi^0 \\ \overline{\Sigma}^- & \to \overline{p} \ \pi^0 \end{array}$ $D^0 \rightarrow K^+K^ K_{\uparrow} \rightarrow \pi^{\bullet} \pi^{0}$ $\{\overline{\Lambda nn}\} \rightarrow t^{+}\pi^{+}$ vector mesons $D^0 \rightarrow K^{0}{}_s \pi^+ \pi^ \Lambda \rightarrow p\pi$ ${}^{3}\Lambda H \rightarrow {}^{3}He \pi$ ρ →e⁺e⁻ $\begin{array}{cc} \overline{\Sigma}^0 & \rightarrow \overline{\Lambda} \gamma \\ \overline{\Sigma}^0 & \rightarrow \overline{\Lambda} \gamma \end{array}$ $\Omega \to \Lambda \mathbb{K}$ $D^0 \rightarrow K^+K^-K^0_A$ $^{3}\Lambda \overline{H} \rightarrow ^{3}\overline{He}\pi^{+}$ $\Lambda \rightarrow p \pi^+$ $\rho \rightarrow \mu^+ \mu^ \overline{\Omega}^{+} \rightarrow \overline{\Lambda} \mathbb{K}^{+}$ $D^+ \rightarrow K^- \pi^+ \pi^+$ $\Sigma^+ \rightarrow p \pi^0$ $4_{\Lambda}H \rightarrow 4He \pi$ $\omega \rightarrow e^+e^ \Xi^0 \rightarrow \Lambda \pi^0$ $\Omega \rightarrow \Lambda K$ $D^+ \rightarrow K^{0}_s \pi^+ \pi^+ \pi^ 4_{\Lambda}\overline{H} \rightarrow 4\overline{He}\pi^{+}$ $\omega \rightarrow \mu^+ \mu^ \overline{\Sigma} \rightarrow \overline{p} \pi^0$ $\overline{\Xi}_0 \rightarrow \overline{\Lambda} \pi^0$ $\overline{\Omega}^{+} \rightarrow \overline{\Lambda} \mathbb{K}^{+}$ $D^+ \rightarrow K^{0}_{s} \pi^+$ ${}^{4}_{\Lambda}He \rightarrow {}^{3}He p \pi$ $\Sigma^+ \rightarrow n \pi^+$ $\Omega \rightarrow \mathfrak{D} \pi$ $D_*^+ \rightarrow K^+ K^- \pi^+$ 4_AHe → ³He p π⁺ $\phi \rightarrow \mu^+ \mu^ \overline{\Sigma}^{-} \rightarrow \overline{n} \pi$ $\overline{\Omega}^{+} \rightarrow \overline{\Xi}^{0} \pi^{+}$ $D_s^+ \rightarrow K_{s}^0 K^+ \pi^+ \pi^ ^{5}AHe \rightarrow ^{4}He p \pi^{-}$ $\Sigma \rightarrow n \pi$ $D_s^{+} \rightarrow K^{0}_s K^{0}_s \pi^{+}$ 5 _AHe \rightarrow 4He \bar{p} π^{+} $\overline{\Sigma}^+ \rightarrow \overline{\mathbf{n}} \pi^+$ Gamma $D^+_* \rightarrow K^{0}_*K^+$ $\gamma \rightarrow e^+e^ \Lambda_{x}^{+} \rightarrow p \text{ K} \cdot \pi^{+}$ Gamma-decays $\Lambda_{s}^{+} \rightarrow p \mathbb{K}_{s}^{0}$ Strange resonances Double- Λ $\pi^0 \rightarrow \gamma \gamma$ $\Lambda_*^+ \rightarrow p K^{0}_{8}\pi^+\pi^$ hypernuclei $\eta \rightarrow \gamma \gamma$ $\Lambda^+ \rightarrow \Lambda \pi^+$ $4_{\Lambda\Lambda}H \rightarrow 4_{\Lambda}He \pi^{-1}$ $\Xi^{*0} \rightarrow \Xi_{7} \pi^{+}$ $\Lambda^+ \rightarrow \Lambda \pi^+ \pi^+ \pi^ \overline{\Xi}^{*0} \rightarrow \overline{\Xi}^{+} \pi^{-}$ $4_{AA}H \rightarrow 3_{A}Hp\pi$ $K^{*+} \rightarrow K_{-}^0 \pi^+$ ${}^{5}_{\Lambda\Lambda}H \rightarrow {}^{5}_{\Lambda}He \pi$ Light mesons + antiparticles $K^{*+} \rightarrow K^{+} \pi^{0}$ $\Omega^{*} \rightarrow \Xi^{-} K^{-} \pi^{+}$ $K^{\bullet_{-}} \rightarrow K^{0}, \pi^{\bullet}$ and baryons $^{6}_{\Lambda\Lambda}He \rightarrow ^{5}_{\Lambda}He p \pi^{+}$ $K^{*} \rightarrow K \cdot \pi^0$ $\Omega^{*+} \rightarrow \Xi^+ K^+ \pi^ \Sigma^{*+} \rightarrow \Lambda \pi^{+}$ $K^{*0} \rightarrow K^0 \pi^0$ $\tilde{\overline{\Sigma}}^{\bullet} \rightarrow \overline{\Lambda} \pi^{\circ}$ $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ $\Sigma^{*0} \rightarrow \Lambda \pi^0$ $\pi^{-} \rightarrow \mu^{-} \overline{\nu_{\mu}}$ Open-charm $\Sigma^{\bullet} \rightarrow \Lambda \pi^{\bullet}$ $\overline{\Sigma}^{*_0} \rightarrow \overline{\Lambda} \pi^0$ $\overline{\overline{\Sigma}}^{*+} \rightarrow \overline{\Lambda} \pi^{+}$ resonances $K^{\bullet 0} \to K^+ \pi^ \rightarrow \pi^+ \pi^ \begin{array}{ccc} \Xi^{*,-} &\to \Xi^{*} \pi^{0} \\ \Xi^{*+} &\to \Xi^{+} \pi^{0} \end{array}$ Heavy multi- $D^{*0} \rightarrow D^+ \pi^ \Xi^* \rightarrow \Lambda K$ $\overline{K}^{*0} \rightarrow \overline{K} \cdot \pi^{+}$ $\Delta^0 \rightarrow p \pi^$ strange objects $\overline{\Xi}{}^{**} \to \overline{\Lambda} \, K^*$ $\overline{\Delta}^0 \rightarrow \overline{p} \pi^+$ $\overline{D}^{*} \rightarrow D^{-}\pi^{+}$ $\phi \rightarrow K^+ K^ \{\Lambda\Lambda\} \rightarrow \Lambda p \pi$ $D^{*+} \rightarrow D^0 \pi^+$ $\Lambda^* \rightarrow p K^ \Delta^{++} \rightarrow p \pi^+$ $\{\Xi^{0}\Lambda\} \rightarrow \Lambda\Lambda$ $D^* \rightarrow \overline{D}^0 \pi^ \overline{\Delta} \rightarrow \overline{p} \pi$ $\Lambda^* \rightarrow \overline{p} K^+$

S. Gorbunov and I. Kisel, CBM-SOFT-note-2007-003, 7 May 2007

M. Zyzak, Dissertation thesis, Goethe University of Frankfurt, 2016, http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docld/41428

KFParticle package has been adopted by CBM, ALICE, sPHENIX and STAR experiments

Yapeng Zhang

3. Λ , ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H Reconstruction

 \succ KFParticle package used for Λ , ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H reconstructions

Yapeng Zhang

Λ , ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H Phase Space and Efficiency

Phase space

Red box: phase space region used for flow analysis

Yapeng Zhang

4. Collective Flow with Event Plane Method

$$\frac{d^2 N}{p_T dp_T d\varphi} = \frac{1}{2\pi} \frac{dN}{p_T dp_T} \left\{ 1 + \sum_{n=1}^{\infty} 2v_n (p_T) \cos[n(\varphi - \Psi_R)] \right\}$$

- v_1 Directed flow; $-v_2$ Elliptic flow ...

1) Fixed Target $\sqrt{s_{NN}}$ = 3 GeV Au+Au collisions

 $y_{target} \approx -1.045$

- 2) Charged tracks measured by TPC used for centrality definition
- 1st order event plane angle measured by Event Plane Detector(EPD)
- Event-plane resolution determination:

$$R_{1} = \langle \cos(\Psi_{1} - \Psi_{r}) \rangle = \frac{\sqrt{\pi}}{2\sqrt{2}} \chi_{1} \exp(-\frac{\chi_{1}^{2}}{4}) [I_{0}(\frac{\chi_{1}^{2}}{4}) + I_{1}(\frac{\chi_{1}^{2}}{4})]$$
$$R_{2} = \langle \cos(2(\Psi_{1} - \Psi_{r})) \rangle = \frac{\sqrt{\pi}}{2\sqrt{2}} \chi_{1} \exp(-\frac{\chi_{1}^{2}}{4}) [I_{\frac{1}{2}}(\frac{\chi_{1}^{2}}{4}) + I_{\frac{3}{2}}(\frac{\chi_{1}^{2}}{4})]$$

• The event plane resolution is in the range of 40 – 75% for the midcentrality 5-40% 3 GeV Au+Au collisions

Yapeng Zhang

Angular Distributions of Hyper-nuclei

Yapeng Zhang

Directed Flow v_1 vs. Rapidity

 $\sqrt{s_{NN}}$ = 3 GeV Au+Au Collisions at RHIC

- First observation of hyper-nuclei collectivity v₁ in high-energy nuclear collisions, EP resolution and efficiency corrections applied.
- 2) Like the cases for light nuclei, hyper-nuclei v_1 seems to follow the mass number scaling within uncertainties \rightarrow

Coalescence is a dominant process for mid-rapidity hyper-nuclei formation in the collisions

Yapeng Zhang

Λ , ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H v₁-Slope vs. Particle Mass

- 1) Within statistical uncertainties, the slopes of v_1 for hyper-nuclei ${}^3_{\Lambda}$ H and ${}^4_{\Lambda}$ H seem following a mass number scaling in the 5-40% 3 GeV Au+Au collisions.
- → Coalescence is a dominant process for hyper-nuclei formation in the collisions
 → Theoritical inputs for collective flow of hyper-nuclei are needed

5. Summary

- 1) Light hyper-nuclei ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H are reconstructed from 3 GeV Au+Au collisions at RHIC; Largest ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H data samples collected.
- 2) First measurements of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H directed flow (v₁) from 5 40% centrality. Analysis of the systematic uncertainties is underway.
- 3) dv_1/dy slopes of hyper-nuclei ${}^3_{\Lambda}H$ and ${}^4_{\Lambda}H$ seem to follow a mass number scaling. This result implies that *coalescence* is a dominant process for hyper-nuclei formation in such collisions.
- 4) Theoretical inputs for collective flow of hyper-nuclei in HICs are needed.

Thank you very much for your attention!

Acknowledgements:

Yuri Fisyak, Ivan Kisel, Iouri Vassiliev, Maksym Zyzak

Yapeng Zhang