

# Longitudinal De-correlation of Anisotropic Flow at RHIC-STAR

Supported in part by the





- Gaoguo Yan (闫高国)
- For the STAR Collaboration
- Shandong University (山东大学)







# Anisotropic flow



2023/04/24

Gaoguo Yan, ATHIC 2023, Apr. 23rd-27th, Hiroshima



$$\frac{dN}{d\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos\{n(\phi - \psi_n)\}$$
S. Voloshin, Y. Zhang  
Z. Phys. C70: 665-67

 $v_2$ : elliptic flow  $v_3$ : triangular flow

### Two-particle correlation method (2PC)

$$\frac{dN^{pair}}{d\phi} \propto 1 + 2\sum_{n=1}^{\infty} V_{n\Delta} cos(n\Delta\phi)$$
  
• Single particle flow:  
S. Wang et al.  
Phys. Rev. C 44, 109

$$V_{n\Delta} = v_n^a(p_T^a, \eta^a)v_n^b(p_T^b, \eta^b)$$

Event-by-event fluctuation

$$V_{n\Delta} = v_n^a(p_T^a, \eta^a)v_n^b(p_T^b, \eta^b)e^{in(\psi_n^a - \psi_n^b)}$$

Fernando G. Gardim et al. Phys. Rev. C. 87. 031901

Piotr Bozek et al. Phys. Rev. C. 83. 034911



### 1 (1991).





Bjorn Schenke, Soren Schlichting Phys. Rev. C 94 (2016) 4, 044907

Measurement of de-correlation can probe 3D initial state and dynamical evolution of the QGP

2023/04/24

### Longitudinal de-correlation

Jiangyong Jia, Peng Huo Phys. Rev. C 90 (2014) 034905







• The factorization ratio,  $r_n$ , is constructed to measure flow de-correlation

$$r_n(\eta) = \frac{\langle q_n(-\eta)q_n^*(\eta_{ref}) \rangle}{\langle q_n(+\eta)q_n^*(\eta_{ref}) \rangle} = \frac{\langle v_n(-\eta)q_n^*(-\eta)q_n^*(\eta_{ref}) \rangle}{\langle v_n(+\eta)q_n^*(\eta_{ref}) \rangle} = \frac{\langle v_n(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)q_n^*(-\eta)$$

• The  $r_n(\eta)$  measures relative fluctuation between  $-\eta$  and  $+\eta$ 



2023/04/24

## Measuring de-correlation

 $v_n(\eta_{ref})cos\{n[\psi_n(-\eta) - \psi_n(\eta_{ref})]\}) >$ 

 $v_n(\eta_{ref})cos\{n[\psi_n(+\eta) - \psi_n(\eta_{ref})]\}) >$ 

CMS Collaboration Phys. Rev. C 92 (2015) 034911



### Energy dependence

**ATLAS** Collaboration Eur. Phys. J. C 78 (2018) 2, 142



Indication of larger longitudinal de-correlation at lower energy

2023/04/24

### LHC results



### System size dependence

**ATLAS** Collaboration Phys. Rev. Lett. 126 (2021) 122301

- Smaller system size has larger longitudinal de-correlation
  - ergy dependence: Beam Energy Scan System size dependence: various species



### Dynamical initial state model calculation



The de-correlation effect becomes stronger at lower collision energies

2023/04/24

Chun Shen, Bjorn Schenke Phys. Rev. C 97 (2018) 2, 024907







### The STAR detector and datasets



2023/04/24



- Time Projection Chamber Full azimuthal coverage TPC:  $|\eta| < 1.0$ iTPC:  $|\eta| < 1.5$
- Event Plane Detector Better event plane resolution  $2.1 < |\eta| < 5.1$
- Data
  - Zr+Zr/Ru+Ru collisions at 200 GeV Au+Au collisions at 19.6, 27, 54.4 GeV





## 2nd order de-correlation in Au+Au at 27 GeV



Significant longitudinal de-correlation at RHIC energy

2023/04/24





# 2nd order de-correlation in Au+Au at 27 GeV



Significant longitudinal of De-correlation is the stro

Significant longitudinal de-correlation at RHIC energy

De-correlation is the strongest in central collisions

![](_page_8_Picture_7.jpeg)

![](_page_8_Picture_8.jpeg)

### 3rd order de-correlation in Au+Au at 27 GeV

![](_page_9_Figure_1.jpeg)

No obvious centrality dependence The 3rd order de-correlation is 2-3 times stronger than 2nd order

2023/04/24

![](_page_9_Figure_5.jpeg)

![](_page_9_Picture_6.jpeg)

### Collision energy dependence of $r_2$

![](_page_10_Figure_1.jpeg)

Clear energy dependence between 54 GeV and 27 GeV

Hint of nonlinear energy dependence?

Gaoguo Yan, ATHIC 2023, Apr. 23rd-27th, Hiroshima

![](_page_10_Picture_6.jpeg)

## Collision energy dependence of $r_3$

![](_page_11_Figure_1.jpeg)

Clear energy dependence between 54 GeV and 27 GeV

2023/04/24

![](_page_11_Picture_6.jpeg)

### System size dependence

![](_page_12_Figure_1.jpeg)

plane between forward and backward directions

![](_page_12_Figure_6.jpeg)

![](_page_12_Figure_7.jpeg)

- Smaller initial size and shorter evolution time lead to larger different event
- Longitudinal de-correlation in smaller collisions system is expected to be larger

## 2nd order de-correlation in Zr+Zr/Ru+Ru

![](_page_13_Figure_1.jpeg)

De-correlation is weakest in mid-central collisions

![](_page_13_Picture_6.jpeg)

# 3rd order de-correlation in Zr+Zr/Ru+Ru

![](_page_14_Figure_1.jpeg)

- No obvious difference between Zr+Zr and Ru+Ru collisions within uncertainties

![](_page_14_Figure_6.jpeg)

Indication of centrality dependence

The 3rd order de-correlation is 2-3 times stronger than 2nd order

![](_page_14_Picture_10.jpeg)

![](_page_14_Picture_11.jpeg)

### Nuclear structure effect

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

Chunjian Zhang and Jiangyong Jia Phys. Rev. Lett. 128 (2022) 2, 022301

From Chun Shen at the INT workshop: Intersection of nuclear structure and high-energy nuclear collisions

2023/04/24

![](_page_15_Figure_7.jpeg)

The  $\beta_2$  has a very small influence in Zr+Zr and Ru+Ru collisions

![](_page_15_Picture_10.jpeg)

![](_page_15_Picture_11.jpeg)

![](_page_15_Picture_12.jpeg)

![](_page_16_Figure_1.jpeg)

The non-zero  $\beta_3$  in Zr+Zr collisions results in a smaller third order de-correlation than Ru+Ru collisions in very central collisions From Chun Shen at the INT workshop: Intersection of nuclear structure and high-energy nuclear collisions

2023/04/24

![](_page_16_Picture_5.jpeg)

## Summary

- GeV and in Zr+Zr and Ru+Ru collisions at 200 GeV are measured
  - **STAR** *Preliminary* •  $r_2(\eta)$  shows centrality dependence
  - $r_3(\eta)$  shows weak centrality dependences
  - Lower collision energies show larger longitudinal de-correlation
  - o No obvious difference b = 27 GeVRu+Ru collisions s<sub>NN</sub> = 19.6 GeV

0.5

evolution of the QGP in heavy-ion collisions

![](_page_17_Picture_9.jpeg)

• Longitudinal de-correlation,  $r_n(\eta)$  (n = 2,3), in Au+Au collisions at 19.6, 27, 54.4

![](_page_17_Figure_11.jpeg)

![](_page_17_Picture_12.jpeg)

# Outlook

- Using STAR BES-II data to study energy dependence precisely
- System size dependence: Au+Au, Zr+Zr/ Ru+Ru and O+O collisions

| System | $\sqrt{s_{NN}}$ (GeV) | Events | Year |
|--------|-----------------------|--------|------|
| Au+Au  | 54.4                  | 1200   | 2017 |
| Isobar | 200                   | 4000   | 2018 |
| Au+Au  | 27                    | 560    | 2018 |
| Au+Au  | 19.6                  | 538    | 2019 |
| Au+Au  | 14.5                  | 325    | 2019 |
| Au+Au  | 11.5                  | 230    | 2020 |
| Au+Au  | 9.2                   | 160    | 2020 |
| Au+Au  | 7.7                   | 100    | 2021 |
| Au+Au  | 200                   | 138    | 2019 |
| 0+0    | 200                   | 400    | 2021 |
| Au+Au  | 200                   | 10000  | 2023 |

![](_page_18_Picture_7.jpeg)

![](_page_18_Picture_8.jpeg)

![](_page_18_Picture_9.jpeg)

## Outlook

- Using STAR BES-II data to study energy dependence precisely
- System size dependence: Au+Au, Zr+Zr/ Ru+Ru and O+O collisions

| System | $\sqrt{s_{NN}}$ (GeV) | Events | Year |
|--------|-----------------------|--------|------|
| Au+Au  | 54.4                  | 1200   | 2017 |
| Isobar | 200                   | 4000   | 2018 |
| Au+Au  | 27                    | 560    | 2018 |
| Au+Au  | 19.6                  | 538    | 2019 |
| Au+Au  | 14.5                  | 325    | 2019 |
| Au+Au  | 11.5                  | 230    | 2020 |
| Au+Au  | 9.2                   | 160    | 2020 |
| Au+Au  | 7.7                   | 100    | 2021 |
| Au+Au  | 200                   | 138    | 2019 |
| 0+0    | 200                   | 400    | 2021 |
| Au+Au  | 200                   | 10000  | 2023 |

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_7.jpeg)

![](_page_19_Picture_9.jpeg)

![](_page_19_Picture_10.jpeg)

2023/04/24

Gaoguo Yan, ATHIC 2023, Apr. 23rd-27th, Hiroshima

![](_page_20_Picture_3.jpeg)

### Backup

![](_page_20_Picture_5.jpeg)

![](_page_20_Picture_6.jpeg)

## Resolution

![](_page_21_Figure_1.jpeg)

EPD shows consistent results for second and third order event plane resolutions

2023/04/24

![](_page_21_Picture_5.jpeg)

![](_page_21_Picture_7.jpeg)

## Anisotropic flow

![](_page_22_Figure_1.jpeg)

2023/04/24

![](_page_22_Picture_4.jpeg)

![](_page_22_Figure_5.jpeg)

![](_page_22_Picture_6.jpeg)

![](_page_22_Picture_7.jpeg)