1	Production of light nuclei in Au+Au collisions from STAR BES-II	
2	Sibaram Behera	
3	(for the STAR Collaboration)	
4	Indian Institute of Science Education and Research (IISER) Tirupati, India	

Light (anti-)nuclei production in heavy-ion collisions can be described by two different mechanisms: 5 the thermal and coalescence models. By analyzing the yields and ratios of the light (anti-)nuclei, we can 6 gain valuable insights into their formation processes and the properties of the system at freeze-out. The 7 enhancement in the compound ratios of light nuclei, such as $N_t N_p / N_d^2$ from the expected coalescence 8 baseline, has been proposed as a tool to probe critical phenomena in the Quantum Chromodynamics 9 phase diagram. In the first phase of the RHIC Beam Energy Scan (BES-I), a notable increase in the 10 compound light nuclei yield ratio $N_t N_p / N_d^2$ was observed in the most central Au+Au collisions at $\sqrt{s_{NN}}$ 11= 19.6 and 27 GeV, with a combined significance of 4.1 σ . The larger datasets (~ 10× BES-I) collected 12 by the STAR during the second phase of the BES program (BES-II) and improved detector capabilities 13 are expected to provide more precise measurements. 14

In this talk, we will explore the centrality and energy dependence of the transverse momentum (p_T) spectra of p, \bar{p} , d, \bar{d} , and ${}^{3}He$ in Au+Au collisions across BES-II energies $\sqrt{s_{NN}} = 7.7 - 27$ GeV. Additionally, we will report the centrality and energy dependence of the p_T integrated yields (dN/dy)and the mean p_T ($\langle p_T \rangle$) of light nuclei. Furthermore, we will discuss the centrality and p_T dependence of the coalescence parameters, B_A , with their broader physics implications.