# **Production of light nuclei in Au+Au collisions from STAR BES-II**



Sibaram Behera (*for the STAR collaboration*) Indian Institute of Science Education and Research (IISER), Tirupati sibarambehera@students.iisertirupati.ac.in



## 10<sup>th</sup> Asian Triangle Heavy-Ion Conference - ATHIC 2025





- Introduction
- ✤ The STAR experiment
- ✤ Analysis details
- ✤ Results:
  - > Transverse momentum  $(p_T)$  spectra
  - > Yield and mean  $p_T$  of light nuclei
  - $\succ$  Coalescence parameters (B<sub>A</sub>)
- ✤ Summary



## **Introduction: Highlights from the STAR BES-I**





- Goal of Beam Energy Scan (BES) program is to explore  $\succ$ **OCD** phase diagram
  - **QGP** to hadronic matter phase transition  $\Rightarrow$ 1. crossover at low  $\mu_{\rm B}$  & 1<sup>st</sup> order at higher  $\mu_{\rm B}$
  - 2. Search for critical point
  - 3. **Turn off** of QGP signatures

## Why light nuclei?

- Understand the production mechanism of light nuclei  $\succ$
- Light nuclei may carry information about the local  $\succ$ baryon density fluctuations  $\Rightarrow$  can be used as a tool to probe the QCD phase diagram

Choice of observable: compound light nuclei ratio  $\Rightarrow \frac{N_t \times N_p}{N_t^2} \propto (1 + \Delta n)$ 

 $\Delta n$ : Neutron fluctuation density

PLB 774 103-107 (2017) PLB 781 499-504 (2018) EPJA 57 11313 (2021)



## **Introduction: Highlights from the STAR BES-I**





Beam Energy Scan program (BES-I) collider mode: 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV

- Total deviation from coalescence baseline is
  4.2 sigma (19.6 and 27 GeV)
- Light nuclei yields and ratios could provide a probe to search for signature of critical phenomena



## The STAR experiment



- > Particle identification is done using:
  - <*dE/dx*> information from **Time Projection Chamber (TPC)**
  - $m^2$  information from **Time of Flight (TOF)**
- ➢ BES-II upgrades:
  - iTPC & eTOF: Large pseudorapidity coverage  $(-1.5 < \eta < 1.5)$
  - Better momentum and dE/dx resolution

Sibaram Behera ATHIC 2025, IISER Berhampur, India 13<sup>th</sup> - 16<sup>th</sup>, January 2025

5



**BES-I energies:** 

$$\sqrt{s_{NN}} = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV$$

#### **BES-II energies:**

 $\sqrt{s_{NN}} = 7.7, 9.2, 11.5, 14.6, 17.3, 19.6, 27, and 54.4 GeV$  $\sqrt{s_{NN}} = 3.0, 3.2, 3.5, 3.9, 4.5, 5.2, 6.2, 7.2, 7.7, 9.2, 11.5, and 13.7 GeV (FXT)$ 



## Light nuclei identification using TPC and TOF



PID using dE/dx information from TPC at low p<sub>T</sub> (0.5 - 1.0 GeV/c)

$$Z = ln(rac{<\!dE/dx>}{<\!dE/dx>_{theory}})$$



> **PID** using  $m^2/q^2$  information from TOF at intermediate  $p_T(1.0 - 5.0 \text{ GeV/c})$ 

$$rac{m^2}{q^2} = rac{p^2}{q^2} (1/eta^2 - 1)$$

#### Signal extraction using TPC and TOF

STAR





### **Corrected p**<sub>T</sub> **spectra: Deuteron**

Sibaram Behera ATHIC 2025, IISER Berhampur, India 13<sup>th</sup> - 16<sup>th</sup>, January 2025

Absorption correction  $(\checkmark)$ 

Background subtraction  $(\checkmark)$ 



- > More precise measurement is done compared to BES-I due to larger statistics ( $\sim 10x$ )
- >  $p_T$  spectra is used to calculate the yield and mean  $p_T$  of light nuclei



More precise measurement is done compared to BES-1 due to larger statistics (\*

 $\succ$  p<sub>T</sub> spectra is used to calculate the yield and mean p<sub>T</sub> of light nuclei



## Integrated yield (dN/dy)



- > dN/dy increases with increasing centrality  $\Rightarrow$  energy density is larger in central collisions
- ➤ dN/dy increases with decreasing collision energy ➡ baryon stopping effect is dominant at lower collision energy



- ▶  $<p_T>$  increases with increasing centrality  $\Rightarrow$  large radial flow in central collisions
- > Comparable  $\langle p_T \rangle$  is observed at a given centrality in various collision energies



$$E_A rac{d^3 N_A}{d p_A^3} = B_A (E_p rac{d^3 N_p}{d p_p^3})^Z (E_n rac{d^3 N_n}{d p_n^3})^{A-Z} \simeq B_A (E_p rac{d^3 N_p}{d p_p^3})^A$$







- > Transverse momentum spectra of d and <sup>3</sup>He in Au+Au collisions at  $\sqrt{s_{NN}} = 7.7 27$  GeV
- > Yield of light nuclei is observed to increases with increasing centrality

Summary

- Light nuclei yield increases with decreasing beam energy due to baryon stopping effect
- > Mean  $p_T$  increases with centrality due to large radial flow
- > B<sub>A</sub> increases with increasing p<sub>T</sub> and also from central to peripheral collisions





**Backup slides**