Production of D_s^{\pm} mesons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

Chuan Fu (Central China Normal University) for the STAR Collaboration

Outline

- Motivation
- STAR detector
- $\bullet D_s^{\pm}$ reconstruction
- Results and comparisons
- Conclusion and outlook

Why study D_s^{\pm} ?

Ref: M. He et al., PRL 110, 112301 (2013)

Charm quarks are excellent probes of properties of Quark-Gluon Plasma (QGP).

Charm quark coalescence hadronization + strangeness enhancement -> R_{AA} (D_s^{\pm}) > R_{AA} (D^0).

How to measure D_s^{\pm} ?

STAR detector

Heavy Flavor Tracker (HFT, 2014-2016): Four-layer silicon detector. Excellent resolution of Distance of Closest Approach (DCA).

Invariant mass distribution

- 2014 data

- Rectangular Cut method from the Toolkit for MultiVariate Analysis is used to reconstruct D_s^{\pm} .

- The RC method optimizes straight cuts on input topological variables in order to maximize signal significance.

$D_s^{\pm} p_T$ spectrum

D_s^{\pm}/D^0 ratio

- No clear centrality dependence is seen in $D_s^\pm/\text{D}^{\text{o}}$ ratio.

- D_s^{\pm}/D^0 ratio in Au+Au collisions is significantly higher than that predicted by PYTHIA for p+p collisions -> charm quark coalescence hadronization + strangeness enhancement^[1]

- TAMU model calculation in the 10-40% centrality bin is systemically below data.

TAMU model includes strong charm quark coupling to the QGP and subsequent recombination with equilibrated strange quarks.

[1] G. Agakishiev et al. (STAR Collaboration), PRL 108, 072301 (2012)

D_s^{\pm}/D^0 ratio

Solid line: sequential coalescence, dash line: simultaneous coalescence (red line is for 10-40% and blue line is for 0-10%).

Data seem to favor sequential coalescence hadronization^[1] within 4-8 GeV/c.

- D_s^{\pm} is formed earlier than D^0 .

[1] J.Zhao, S.Shi, N.Xu, P.Zhuang. arXiv:1805.10858v1

Comparison with ALICE result

[1] A. Barbano (for the ALICE Collaboration), Nucl. Phys. A 967, 612 (2017)

Conclusion

• D_s^{\pm} measurements in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV enabled by the HFT.

• D_s^{\pm}/D^0 enhancement with respect to the fragmentation baseline in 2.5<p_< 8 GeV/c in central and mid-central Au+Au collisions:

-Coalescence mechanism for charm quark hadronization + strangeness enhancement.

- Data seem to favor sequential coalescence hadronization compared to Tsinghua model.

Outlook

Left: 2014 data with Rectangular cut method. Right: Combined 2014 + 2016 data (2.5x more statistics) with BDT method. -> significant improvement in D_s^{\pm} signal significance (25->46).