

Measurement of global polarization of Λ hyperons in Au+Au $\sqrt{s_{\rm NN}}$ = 7.2 GeV fixed-target collisions at RHIC-STAR experiment

Kosuke Okubo for the STAR collaboration
University of Tsukuba
The 8th Asian Triangle Heavy-Ion Conference
8, Nov. 2021

STAR Introduction

- ◆In non-central collisions...
 - The created matter should exhibit strong vorticity.
 - -Z.-T.Liang and X.-N. Wang, PRL94, 102301
 - The strong magnetic field would appear in the initial state.
 - -D. Kharzeev, L. McLerran, and H. Warring, Nucl. Phys. A803, 227 (2008)
 - -McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

STAR Global polarization

Large angular momentum transfers to the spin degrees of freedom:

-Particle and anti-particle's spins are aligned with angular momentum.

- Spin alignment by magnetic field:
 - -Particles and anti-particles get aligned in the opposite direction due to the opposite signs of their magnetic moments.
 - Both are considered to contribute to the global polarization.

How to measure the global polarization?

- Parity-violating decay of hyperon
 - Daughter proton preferentially decays along the Λ 's spin (opposite for anti- Λ).

$$\Lambda \to p + \pi^-$$
 (BR:63.9%, c τ ~7.9cm)

- Polarization can be measured via the distribution of the azimuthal angle of the daughter proton (in the hyperon rest frame).
- Projection onto the transverse plane

$$P_{H} = \frac{8}{\pi \alpha_{H}} \frac{\langle \sin(\Psi_{1} - \phi_{p}^{*}) \rangle}{Res(\Psi_{1})}$$

- STAR, PRC76, 024915(2007)

 α_H : decay parameter ($\alpha_{\Lambda} = 0.732 \pm 0.014$) P.A. Zyla et al. (PDG), Prog. Theor. Exp. Phys.2020, 083C01 (2020).

 $\Psi_1:1^{\mathrm{st}}$ -order event plane

 ϕ_p^* : azimuthal angle of the daughter proton in the Λ 's rest frame

STAR VIotivation

- ► Λ global polarization has been measured from $\sqrt{s_{\mathrm{NN}}}$ = 2.4 GeV to 5.02 TeV.
 - ✓ Polarization increases toward lower collision energy.
 - √No significant difference between Λ and anti-Λ.
- New analysis of global polarization at $\sqrt{s_{\mathrm{NN}}}$ = 7.2 GeV with fixed-target experiment.
 - ✓209M events at 7.2 GeV > 4M events at 7.7 GeV (BES I).
 (Good minimum bias events)

STAR The STAR detector

STAR STAR fixed-target program

- √The gold target was installed inside the vacuum pipe at z = 2.0 m.
- ✓ Target is 0.25 mm thick and ~1% interaction probability.
- √209M good minimum bias events for Au+Au with fixed-target experiment at $\sqrt{s_{\rm NN}}$ = 7.2 GeV.
- ✓ Mid-rapidity for 7.2 GeV is -2.02.

FIRE Event plane correlation and resolution

✓ Event plane resolution was calculated by 3-subevent method.

$$\langle \cos([\Psi_1^A - \Psi_1^B]) \rangle = \langle \cos([\Psi_1^A - \Psi_1^{\text{true}}]) \rangle \langle \cos([\Psi_1^{\text{true}} - \Psi_1^B]) \rangle$$
$$= \sigma_n^A \sigma_n^B$$

$$Res(\Psi_1^A) = \sqrt{\frac{\langle \cos([\Psi_1^A - \Psi_1^B]) \rangle \langle \cos([\Psi_1^A - \Psi_1^C]) \rangle}{\langle \cos([\Psi_1^B - \Psi_1^C]) \rangle}}$$

A: EPD most inner 4 rings

B: TPC $(-0.5 < \eta < 0)$

C: TPC $(-1.5 < \eta < -1.0)$

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).

√ First-order event plane

$$\Psi_1 = \tan^{-1} \left(\frac{\sum w_i \sin(\phi_i)}{\sum w_i \cos(\phi_i)} \right)$$

First,

$$w_i^{\text{TPC}} = \eta - y^{\text{mid}}$$
 $w_i^{\text{EPD}} = \text{nMip}$

Second,

$$w_i = \langle \cos(\phi^A - \Psi_1) \rangle$$
 A : pion or proton

EPD most inner 4 rings

STAR A reconstruction

 Charged particles can be identified via specific ionization energy loss in the TPC and mass estimated from TOF.

Proton

⋄Pion

$$\sqrt{|n\sigma|} < 3$$

$$\sqrt{|n\sigma|} < 3$$

$$√0.5 < m^2 < 1.5 (GeV/c^2)^2$$

$$\sqrt{-0.06} < m^2 < 0.1 \, (\text{GeV/c}^2)^2$$

Topological cut

√Λ-DCA < 0.8 cm **√**p-DCA > 0.4 cm

✓ Decay length > 5.0 cm $\sqrt{\pi}$ -DCA > 1.6 cm

√p-π DCA < 1.1 cm (Centrality 30-40%)

These values of topological cut are slightly tuned depending on centrality.

STAR Collision energy dependence of Ph

- ✓ First measurements in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 3.0, 7.2 GeV.
 - Observed positive A global polarization!
 - These results follows the global trend of the energy dependence.
 - ∧ global polarization increases at lower collision energies.

STAR Centrality dependence of Ph

✓ Polarization increases in more peripheral collisions.

Rapidity dependence of Ph

- ✓ Polarization is expected to depend on rapidity but the prediction is different among models.
- √The result does not show significant rapidity dependence within our acceptance.
- ✓ Polarization in large rapidity region can be explored in the future with iTPC and forward upgrade (2023+2025).

Transverse momentum dependence of Ph

✓One might expect ...

- -decrease at low p_{T} due to the smearing effect caused by scattering at the later stage of the collisions.
- -decrease at high p_{T} due to jet fragmentation.

J. Adams et al. (STAR), PRC98, 14910 (2018)

√No significant p_T dependence.

STAR Summary

Summary

- •We presented Λ global polarization in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.2 GeV with fixed-target configuration.
 - Positive polarization is observed.
 - Λ polarization increases at lower collision energies.
 - Increasing trend towards peripheral collisions as expected.
 - There are no significant rapidity and p_{T} dependences.

Outlook

- ► Measurement of anti-Λ polarization.
- ✓ We completed the data taking of BES II + FXT.

$$-\sqrt{s_{\rm NN}}$$
 = 7.2 GeV : 267M(now) \to 267M + about 400M.

Collider mode data at BES II

Beam Energy	$\sqrt{s_{ m NN}}$	$\mu_{ m B}$	Number Events	Date
(GeV/nucleon)	(GeV)	(MeV)	Requested (Recorded)	Collected
13.5	27	156	(560 M)	Run-18
9.8	19.6	206	400 M (582 M)	Run-19
7.3	14.6	262	300 M (324 M)	Run-19
5.75	11.5	316	230 M (235 M)	Run-20
4.59	9.2	373	160 M (162 M)	Run-20+20b
3.85	7.7	420	100 M (100 M)	Run-21

Fixed-target mode data at BES II

Beam Energy	$\sqrt{s_{ m NN}}$	$\mu_{ m B}$	Run Time	Number Events	Date
(GeV/nucleon)	(GeV)	(MeV)		Requested (Recorded)	Collected
31.2	7.7 (FXT)	420	$0.5{+}1.1~\mathrm{days}$	100 M (50 M+112 M)	Run-19+20
19.5	6.2 (FXT)	487	1.4 days	100 M (118 M)	Run-20
13.5	5.2 (FXT)	541	1.0 day	100 M (103 M)	Run-20
9.8	4.5 (FXT)	589	$0.9 \; \mathrm{days}$	100 M (108 M)	Run-20
7.3	3.9 (FXT)	633	1.1 days	100 M (117 M)	Run-20
5.75	3.5 (FXT)	666	$0.9 \mathrm{days}$	100 M (116 M)	Run-20
4.59	3.2 (FXT)	699	2.0 days	100 M (200 M)	Run-19
3.85	3.0 (FXT)	721	4.6 days	100 M (259 M)	Run-18

Back up

STAR Pile up rejection

✓ Pile up events are removed using TOF start timing(T0).

Step1: Count number of pion and proton with T0 from -0.3 to 0.3 [nsec].

Step2: The event where the number of pion and proton is far from average are removed as pile up events in each multiplicity bin.

- About 90% pile up events would be removed.

T0 = the average of Time of Flight - Time of Flight of each particle

STAR Extract the polarization signal

✓ Observed polarization is more sharply peaked near Λ mass and it dips on the sides mass peak.

The width of the invariant mass depends on the daughter's azimuthal emission angle relative to the Λ .

Discussed in more detail; arxiv: 2108.00044

Extract the polarization signal

- ✓ Calculate polarization each $\phi_{\Lambda} \phi_{p}^{*}$ bin.
 - Invariant mass method
 - The data was fitted with the following formula.

$$\langle \sin(\Delta\phi)\rangle^{\rm obs} = (1 - f^{\rm Bg}(M_{inv}))\langle \sin(\Delta\phi)\rangle^{\rm Sg} + f^{\rm Bg}(M_{inv})\langle \sin(\Delta\phi)\rangle^{\rm Bg}$$

$$\Delta \phi = \Psi_1 - \phi_p^*$$

$$f^{Bg}(M_{inv}) = f(M_{inv}^{Bg})/f(M_{inv}^{obs})$$

✓ Observed polarization is described as follows.

$$\frac{8}{\pi \alpha_H} \frac{1}{R^1_{EP}} \left\langle \sin \left(\Psi_1 - \phi^*_p \right) \right\rangle^{Sg} = P_{\Lambda}^{true} + cv_1 \sin \left(\phi_{\Lambda} - \phi^*_p \right)$$

STAR Systematic uncertainty

- ✓ Different topological cut(~1.6%)
 - -Ten different cuts are applied.

- p-DCA±0.1cm
- π-DCA±0.1cm
- p-π DCA±0.1cm
- Λ-DCA±0.1cm
- Decay length±0.5cm
- ✓ Method comparison for extracting polarization signal (~17.0%)
 - -Invariant mass method
 - -Event plane method
- √ Background assumption for polarization in the invariant mass method(~0.4%)
- ✓ Uncertainty from decay parameter α_H (~3.2%)
- √Cumulant correction(~3.8%)
- ✓ Efficiency correction(~8.2%)