Measurement of directed flow at forward and backward pseudorapidity in Au+Au collisions at $\sqrt{s_{NN}} = 27$ GeV with the Event Plane Detector at STAR

Xiaoyu Liu¹ (For the STAR Collaboration)

3

¹ The Ohio State University

Contact e-mail: liu.6566@osu.edu

Directed flow (v_1) describes the collective sideward motion of produced particles and nuclear fragments in heavy-ion collisions. The pseudorapidity (η) dependence of v_1 can provide unique constraints on the initial conditions and dynamical evolution of the Quark Gluon Plasma (QGP). Directed flow in both spectator and participant regions is sensitive to early non-equilibrium dynamics and may provide insights into the baryon stopping mechanism. In 2018, the Event Plane Detector (EPD, $2.1 < |\eta| < 5.1$) was installed in STAR and used for the Beam Energy Scan phase-II (BES-II) data taking. The combination of EPD and high statistics BES-II data enables us to extend the v_1 measurement to the forward and backward η regions, allowing us to verify the phenomenon of limiting fragmentation. In this talk, I will discuss the techniques for measuring v_1 with a scintillator detector like EPD, present v_1 over ten units of η in Au+Au collisions at $\sqrt{s_{NN}} = 27$ GeV and compare the results with the UrQMD model.