Open Heavy Flavor Results from STAR

Guannan XIE (for the STAR Collaboration)

University of Illinois at Chicago
Heavy quarks: $m_{c/b} \gg \Lambda_{QCD}$, $T_{QGP(RHIC)}$
- Produced early in heavy-ion collisions through hard scatterings
- Experience the whole evolution of the system
 \Rightarrow good probe of medium properties, e.g. transport parameters

\[\int \]
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>• In medium energy loss</td>
</tr>
<tr>
<td>(D^0 R_{AA}, R_{CP})</td>
</tr>
<tr>
<td>• Hadronization</td>
</tr>
<tr>
<td>(\Lambda_c, D_s)</td>
</tr>
<tr>
<td>• Charm conservation</td>
</tr>
<tr>
<td>Total charm cross-section</td>
</tr>
<tr>
<td>• Possible medium modification</td>
</tr>
<tr>
<td>of spectral function</td>
</tr>
<tr>
<td>(D^{*+/})</td>
</tr>
<tr>
<td>• Mass dependence of energy loss</td>
</tr>
<tr>
<td>(B \rightarrow (J/\psi, D^0, e))</td>
</tr>
<tr>
<td>• Probe the longitudinal profile and electromagnetic field</td>
</tr>
<tr>
<td>(D^0 v_1)</td>
</tr>
<tr>
<td>• Transport coefficients</td>
</tr>
<tr>
<td>(D^0 v_2)</td>
</tr>
</tbody>
</table>
Time Projection Chamber:
Tracking, PID (dE/dx), |η|<1, 2π

Time Of Flight detector:
PID (1/β), |η|<0.9, 2π
Heavy Flavor Tracker

HFT:
- Silicon Strip Detector: $r \sim 22$ cm
- Intermediate Silicon Tracker: $r \sim 14$ cm
- PIXEL detector: $r \sim 2.8$ & 8 cm, MAPS, 20.7x20.7 µm2, 0.4%$X_0(2016)$ thick, air-cooled
D⁰ pₜ Spectra

- Precise measurements of D⁰ spectra extended to low pₜ and non-central collisions with HFT from 2014 data
- Results consistent with the re-analyzed 2010/11 TPC analysis
$D^0 R_{AA}$

- $R_{AA} < 1$ in the 0-10% centrality interval for all p_T
- Suppression at high p_T increases towards more central collisions
- Similar to D-mesons at LHC and high-p_T pions at RHIC

STAR Preliminary

$\sqrt{s_{NN}} = 200$ GeV

(a) 0-10%

(b) 10-40%

(c) 40-80%

$Au+Au$, ±π, ±h

STAR, ALICE, LBT, Duke

ALICE: JHEP 03 (2016) 081
D⁰ R_{CP} and \bar{D}⁰/D⁰ Ratio

- Significant suppression at high p_T.
- Reasonable agreement with theoretical calculations.
- \bar{D}⁰/D⁰ ratio is larger than 1.

Graphical Analysis

- **Au+Au @ 200 GeV**
 - STAR Preliminary
 - \(p_T\) distribution for different centrality bins:
 - **0-10%**
 - Significant suppression at high \(p_T\).
 - Reasonable agreement with theoretical calculations.
 - \(D^0/\bar{D}^0\) ratio is larger than 1.
 - **10-20%**
 - **20-40%**

Fit Results

- **0-10%**
 - Fit: \(1.104 \pm 0.021\)
- **10-20%**
 - Fit: \(1.071 \pm 0.019, 1.060 \pm 0.015\)
- **40-60%**
 - Fit: \(1.073 \pm 0.022, 0.943 \pm 0.039\)
D⁰ Cross-section and Blast Wave Fit

- Total D⁰ cross-section is nearly independent of centrality, and smaller than in p+p. However, for p_T > 4 GeV/c it decreases with centrality.
- Blast Wave fits (p_T < 5 GeV/c) : suggests earlier freeze-out of D⁰
\(\Lambda_c \) and Heavy Quark Hadronization

- Strong enhancement of \(\Lambda_c/D^0 \) ratio seen in Au+Au collisions.
- Enhancement predicted from coalescence hadronization.
- Enhancements relative to PYTHIA also seen in p+p and p+Pb collisions at LHC.

\[\frac{\Lambda_c/D^0}{(D^0+\bar{D}^0)} \]

\(\Lambda_c/D^0 \) in A+A

\(p_T \) and centrality dependence?

Guannan Xie

Λ_c Reconstruction

- More than 50% improvement in signal significance with TMVA BDT
- Also new data from 2016
 → Effectively 4x more data

2014 (Rectangular) QM17

- Au+Au @ 200GeV
- 10-60%

2014+2016 (BDT)

- Au+Au @ 200GeV
- 10-60%

STAR Preliminary

- $(\Lambda_c) = 108 \pm 21$
- $(\Lambda_c) = 233 \pm 22$

Significance = 10.8
\(\Lambda_c/D^0 : p_T \) Dependence

- Significant enhancement of \(\Lambda_c/D^0 \) compared to PYTHIA/fragmentation baseline
- The \(\Lambda_c/D^0 \) ratio is comparable with light flavor baryon-to-meson ratios
- Consistent with charm quark hadronization via coalescence
 -- higher than model predictions, particularly at higher \(p_T \)

![Graph showing Baryon/Meson Ratios vs. Transverse Momentum](image-url)

- **STAR Preliminary**
- **Au+Au @ 200GeV**
- **Ko: three-quark (0-5%)**
- **Ko: di-quark (0-5%)**
- **Greco (0-20%)**
- **SHM**
- **PYTHIA**
Λ_c/D^0 : Centrality Dependence

- Λ_c/D^0 ratio increases from peripheral to central collisions, indicative of hot medium effects
- Ratio for peripheral Au+Au comparable with p+p value at 7 TeV

ALICE: arXiv:1712.09581
D_s/D_0 Enhancement

- Strong D_s/D_0 enhancement observed in central A+A collisions w.r.t fragmentation baseline
 - Strangeness enhancement and coalescence hadronization
- Enhancement is larger than model predictions, particularly at higher p_T

[Graph showing D_s/D_0 ratio vs. p_T for Au+Au collisions at 200 GeV]

STAR Preliminary

Guannan Xie
Total Charm Cross-section

- Total charm cross-section is estimated from the various charm hadron measurements

\[D^0 \text{ yields are measured down to zero } p_T \]

\[\text{For } D^{+/0} \text{ and } D_s, \text{ levy fits to measured spectra are used for extrapolation.} \]

\[\text{For } \Lambda_c, \text{ three model fits to data are used and differences are included in systematics} \]

<table>
<thead>
<tr>
<th>Charm Hadron</th>
<th>Cross Section $d\sigma/dy$ ((\mu b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>D^0</td>
<td>41 \pm 1 \pm 5</td>
</tr>
<tr>
<td>D^+</td>
<td>18 \pm 1 \pm 3</td>
</tr>
<tr>
<td>D_s^+</td>
<td>15 \pm 1 \pm 5</td>
</tr>
<tr>
<td>Λ_c^+</td>
<td>78 \pm 13 \pm 28*</td>
</tr>
<tr>
<td>Total</td>
<td>152 \pm 13 \pm 29</td>
</tr>
<tr>
<td>AuAu 200 GeV (10-40%)</td>
<td></td>
</tr>
<tr>
<td>pp 200 GeV</td>
<td>Total</td>
</tr>
</tbody>
</table>

* derived using Λ_c^+/D^0 ratio in 10-80%

- Total charm cross-section is consistent with p+p value within uncertainties, but redistributed
D*+/D⁰ Ratio in Au+Au Collisions

- Possible hot medium effects:
 - D*+ life time could become shorter in hot medium
 - Re-scattering can lead to a yield loss

- D*+/D⁰ ratio in Au+Au collisions at 200 GeV is consistent with PYTHIA and with ALICE data at higher pₜ.

- Ratio of the integrated yields shows no strong centrality dependence

Guannan Xie

2018 RHIC & AGS Annual Users' Meeting (BNL)
Non-prompt D^0

- Strong interaction of charm with the medium. How about bottom?
- R_{AA} of non-prompt D^0 extracted from the measured non-prompt fraction
- Improved signal significance for non-prompt D^0 fraction using BDT. New result down to low p_T with 2014+2016 data on the way

Guannan Xie
2018 RHIC & AGS Annual Users' Meeting (BNL)
B Study from Non-prompt J/ψ & D⁰ & e

- Strong suppression for $B \to J/\psi$ and D^0 at high p_T.
- Indication of less suppression for $B \to e$ than $D \to e$ ($\sim 2\sigma$): consistent with $\Delta E_c > \Delta E_b$.
- Measurements with improved precision are on the way.

Note: R_{AA} references (data vs. theory) are different for these comparisons. The decay kinematics needs to be unfolded for different channels.
D0 Directed Flow (v_1)

- Charm and anti-charm quarks can be deflected differently by the initial EM field → difference between D0 and \overline{D}^0 v_1 sensitive to EM field
- Charm quarks interact with bulk medium → D0 v_1 sensitive to the initial tilt of the source (bulk)
- First observation of non-zero (negative) D$^0(\overline{D}^0)$ v_1 slope
- D$^0(\overline{D}^0)$ v_1-slope much larger than that of kaons
D⁰ Elliptic Flow (v₂)

- Published D⁰ v₂ from data taken during 2014
- Clear mass ordering for pₜ < 2 GeV/c
- Follows NCQ-scaling in mid-central (10 - 40%) collisions

Phys Rev. Lett. 118, 212301 (2017)
D0 Elliptic Flow (v\textsubscript{2})

- D0 v\textsubscript{2} measurement extended to 0-10% centrality with combined data from 2014 and 2016 runs
- NCQ-scaling test with improved precision
- Charm quarks gain significant flow! 2014+2016
Summary

• Strong modification of charm hadron spectra and hadrochemistry in A+A collisions. \((D^0 R_{AA} \& R_{cp}, D_s/D^0, \Lambda_c/D^0, D^0 v_2, D^0 v_1) \).
 -- total charm quark cross-section conserved
 -- substantial energy loss & coalescence hadronization
 -- gain significant flow & may have achieved thermal equilibrium in the medium \((D^0 v_2) \)
 -- first observation of non-zero directed flow \((v_1) \) for \(D^0 \).

• Strong energy loss at high \(p_T \) for \(B \rightarrow J/\psi \), and \(B \rightarrow D^0 \) measurements. Indication of less energy loss for bottom \((B \rightarrow e) \), and measurement with better precision on the way.
Summary II – Charm / Bottom

\[\frac{R_{AA}(D^0)}{R_{AA}(\pi)} \sim v_2(D^0) \sim v_2(h) \text{ vs. } m_T \]

- lose significant energy
- gain significant flow

Experimental: precision measurement of bottom
Theoretical: converge on value of transport parameters

Next
Back up
D^0 in AuAu (2010/2011 TPC Analysis) - I

Erratum: PRL 113 (2014) 142301

1. Two mistakes were discovered in calculating TOF related efficiency corrections
 - Hybrid PID: algorithm inconsistently implemented in data analysis vs. efficiency calculation
 - a DCA_{xy} cut efficiency was included in the correction two times

2. p+p measurement: no issue discovered, but the p+p D^0 baseline used for R_{AA} is updated with latest knowledge of charm frag. ratios
 - considering the p_T dependence of D*/D^0 frag. ratio
 - latest world average of c->D^0 and c->D* frag. ratios

(D^0 at p_T<2 GeV/c + D* at 2-6 GeV/c, *PRD 86 (2012) 072012*)
STAR preliminary

\[\text{Au+Au } \sqrt{s_{NN}} = 200 \text{ GeV} \]

Centrality 0-10%

- **Similar suppression for** \(D^0 \) **and** \(D^{+/−} \)
- **Spectra measurement was important for the total charm cross-section**
D*+ Production in Au+Au Collisions

- D*+ feeds down to D° yields $D^{*+} \rightarrow D^0 + \pi^+$
- Hot medium effects:
 - D*+ life time could become shorter in hot medium
 - Re-scattering can lead to loss of yield

Guannan Xie
2018 RHIC & AGS Annual Users' Meeting (BNL)
B Study from Non-prompt J/ψ & D⁰ & e

\[
R_{AA}^{B\rightarrow J/\psi} = \frac{f_{Au+Au}^{B\rightarrow J/\psi}(data)}{f_{p+p}^{B\rightarrow J/\psi}(theory)} R_{AA}^{inc. J/\psi}(data)
\]

\[
R_{AA}^{B\rightarrow e} = \frac{f_{Au+Au}^{B\rightarrow e}(data)}{f_{p+p}^{B\rightarrow e}(data)} R_{AA}^{inc. e}(data)
\]

\[
R_{AA}^{B\rightarrow D^0} = \frac{1}{<N_{coll}>} \frac{f_{Au+Au}^{B\rightarrow D^0} \times dN_{incl. D^0/pt}/dp_T}{dN_{FONLL/pt}/dp_T}
\]

\[
R_{AA}^{D\rightarrow e} = \frac{1-f_{Au+Au}^{B\rightarrow e}(data)}{1-f_{p+p}^{B\rightarrow e}(data)} R_{AA}^{inc. e}(data)
\]

Note: \(R_{AA} \) references (data vs. theory) are different for different channels

Guannan Xie
2018 RHIC & AGS Annual Users' Meeting (BNL)
• The moving spectators can produce enormously large electromagnetic field ($eB \sim 10^{18} \text{ G at RHIC}$)

• Due to early production of heavy quarks ($\tau_{CQ} \sim 0.1 \text{ fm/c}$) positive and negative charm quarks (CQs) can get deflected by the initial EM force

• D^0 and \bar{D}^0 v_1 can offer insight into the early time EM fields
Directed flow (v_1) due to hydro

- Heavy quarks are produced according to Ncoll density: symmetric in rapidity
- At non-zero rapidity, CQs production points are shifted from the bulk
- This can induce larger v_1 in CQs than light flavors
- Magnitude of CQ v_1 depends on the drag parameter used in this model

$\rightarrow (v_1\text{-slope})_{CQ} \gg (v_1\text{-slope})_{LQ}$ CQs much more sensitive to the initial tilt than the charged hadrons