

Open Heavy Flavor Results from STAR

Guannan XIE (for the STAR Collaboration)
University of Illinois at Chicago

Introduction

Heavy quarks: $m_{c/b} \gg \Lambda_{QCD}$, $T_{QGP(RHIC)}$

- Produced early in heavy-ion collisions through hard scatterings
- Experience the whole evolution of the system
 - → good probe of medium properties, e.g. transport parameters

Contents

- In medium energy loss $D^0 R_{AA}$, R_{CP}
- Hadronization
 Λ_c, D_s
- Charm conservation
 Total charm cross-section
- Possible medium modification of spectral function
 D*+/-
- Mass dependence of energy loss $B \rightarrow (J/\psi, D^0, e)$

• Probe the longitudinal profile and electromagnetic field D⁰ V₁

Transport coefficients
 D⁰ v₂

STAR Detector

Heavy Flavor Tracker

D⁰ p_T Spectra

- Precise measurements of D⁰ spectra extended to low p_T and noncentral collisions with HFT from 2014 data
- Results consistent with the re-analyzed 2010/11 TPC analysis

STAR

$\mathbf{D^0}\,\mathbf{R_{AA}}$

- R_{AA} < 1 in the 0-10% centrality interval for all p_T
- Suppression at high p_T increases towards more central collisions
- Similar to D-mesons at LHC and high-p_T pions at RHIC

STAR

$D^0 R_{CP}$ and D^0/D^0 Ratio

- Significant suppression at high p_T.
- Reasonable agreement with theoretical calculations
- D^0/D^0 ratio is larger than 1.

D⁰ Cross-section and Blast Wave Fit

- Total D⁰ cross-section is nearly independent of centrality, and smaller than in p+p. However, for $p_T > 4$ GeV/c it decreases with centrality.
- Blast Wave fits $(p_T < 5 \text{ GeV/c})$: suggests earlier freeze-out of D^0

Λ_c and Heavy Quark Hadronization

- Strong enhancement of Λ_c/D^0 ratio seen in Au+Au collisions.
- Enhancement predicted from coalescence hadronization.
- Enhancements relative to PYTHIA also seen in p+p and p+Pb collisions at LHC.

Transverse Momentum p_{_} (GeV/c)

 Λ_c/D^0 in A+A p_T and centrality dependence?

Ko: PRC 79 (2009) 044905. Greco: PRD 90 (2014) 054018 SHM: PRC 79 (2009) 044905. ALICE: arXiv:1712.09581

Λ_c Reconstruction

- More than 50% improvement in signal significance with TMVA BDT
- Also new data from 2016
 - \rightarrow Effectively 4x more data

Λ_c/D^0 : p_T Dependence

- Significant enhancement of Λ_c/D^0 compared to PYTHIA/fragmentation baseline
- The Λ_c/D^0 ratio is comparable with light flavor baryon-to-meson ratios
- Consistent with charm quark hadronization via coalescence
 - -- higher than model predictions, particularly at higher p_T

Λ_c/D^0 : Centrality Dependence

- Λ_c/D^0 ratio increases from peripheral to central collisions, indicative of hot medium effects
- Ratio for peripheral Au+Au comparable with p+p value at 7 TeV

ALICE: arXiv:1712.09581

Guannan Xie

D_s/D⁰ Enhancement

- Strong D_s/D⁰ enhancement observed in central A+A collisions w.r.t fragmentation baseline
 - Strangeness enhancement and coalescence hadronization
- Enhancement is larger than model predictions, particularly at higher p_T

TAMU: H. Min et al. PRL 110, 112301 (2013) SHM: A. Andronic et al., PLB 571 (2003) 36

Total Charm Cross-section

- Total charm cross-section is estimated from the various charm hadron measurements
- -- D⁰ yields are measured down to zero p_T
- -- For D^{+/-} and D_s, levy fits to measured spectra are used for extrapolation.
- -- For Λ_c , three model fits to data are used and differences are included in systematics

Charm Hadron		Cross Section dσ/dy (μb)
AuAu 200 GeV (10-40%)	D^0	41 ± 1 ± 5
	$D^{^{+}}$	18 ± 1 ± 3
	D_s^+	15 ± 1 ± 5
	$\boldsymbol{\Lambda}_{c}^{+}$	78 ± 13 ± 28 *
	Total	152 ± 13 ± 29
pp 200 GeV	Total	130 ± 30 ± 26

^{*} derived using Λ_c^+/D^0 ratio in 10-80%

 Total charm cross-section is consistent with p+p value within uncertainties, but redistributed

D*+/D0 Ratio in Au+Au Collisions

Possible hot medium effects:

STAR

- D*+ life time could become shorter in hot medium
- Re-scattering can lead to a yield loss
- D^{*+}/D^0 ratio in Au+Au collisions at 200 GeV is consistent with PYTHIA and with ALICE data at higher p_T .
- Ratio of the integrated yields shows no strong centrality dependence

Non-prompt D⁰

- Strong interaction of charm with the medium. How about bottom?
- R_{AA} of non-prompt D⁰ extracted from the measured non-prompt fraction
- Improved signal significance for non-prompt D^0 fraction using BDT. New result down to low p_T with 2014+2016 data on the way

B Study from Non-prompt J/ψ & D⁰ & e

- Strong suppression for $B \rightarrow J/\psi$ and D^0 at high p_T .
- Indication of less suppression for $B \rightarrow e$ than $D \rightarrow e \ (\sim 2 \ \sigma)$: consistent with $\Delta E_c > \Delta E_b$
- Measurements with improved precision are on the way

Note: R_{AA} references (data vs. theory) are different for these comparisons. The decay kinematics needs to be unfolded for different channels.

STAR

D^0 Directed Flow (v_1)

- Charm and anti-charm quarks can be deflected differently by the initial EM field \rightarrow difference between D⁰ and \overline{D}^0 v₁ sensitive to EM field
- Charm quarks interact with bulk medium \rightarrow D⁰ v₁ sensitive to the initial tilt of the source (bulk)
- First observation of non-zero (negative) $D^0(\overline{D}^0)$ v_1 slope
- $D^0(\overline{D^0})$ v_1 -slope much larger than that of kaons

2014+2016

D^0 Elliptic Flow (v_2)

- Published D⁰ v₂ from data taken during 2014
- Clear mass ordering for $p_T < 2 \text{ GeV/c}$
- Follows NCQ-scaling in mid-central (10 40%) collisions

D^0 Elliptic Flow (v_2)

- $D^0 v_2$ measurement extended to 0-10% centrality with combined data from 2014 and 2016 runs
- NCQ-scaling test with improved precision
- Charm quarks gain significant flow!

2014+2016

Summary

- Strong modification of charm hadron spectra and hadrochemistry in A+A collisions. (D⁰ R_{AA} & R_{cp}, D_s/D⁰, Λ_c /D⁰, D⁰ v₂, D⁰ v₁).
 - -- total charm quark cross-section conserved
 - -- substantial energy loss & coalescence hadronization
 - -- gain significant flow & may have achieved thermal equilibrium in the medium $(D^0 v_2)$
 - -- first observation of non-zero directed flow (v_1) for D^0 .
- Strong energy loss at high p_T for $B \rightarrow J/\psi$, and $B \rightarrow D^0$ measurements. Indication of less energy loss for bottom $(B \rightarrow e)$, and measurement with better precision on the way.

Summary II - Charm / Bottom

$$R_{AA}(D^0) \sim R_{AA}(\pi)$$

 $V_2(D^0) \sim V_2(h) \text{ vs. } m_T$

- lose significant energy
- gain significant flow

Next

Experimental: precision measurement of bottom

Theoretical: converge on value of transport parameters

Back up

D⁰ in AuAu (2010/2011 TPC Analysis) - I Erratum: PRL 113 (2014) 142301

- 1. Two mistakes were discovered in calculating TOF related efficiency corrections
 - Hybrid PID: algorithm inconsistently implemented in data analysis vs. efficiency calculation
 - a DCA_{xy} cut efficiency was included in the correction two times
- 2. p+p measurement: no issue discovered, but the p+p D^0 baseline used for R_{AA} is updated with latest knowledge of charm frag. ratios $(D^0 \text{ at } p_T < 2 \text{ GeV/c} + D^* \text{ at } 2\text{-}6 \text{ GeV/c},$
 - considering the p_T dependence of D*/D⁰ frag. ratio | PRD 86 (2012) 072012)
 - latest world average of c->D⁰ and c->D* frag. ratios

$$\mathbf{D}^{+/-}\mathbf{R}_{\mathbf{A}\mathbf{A}}$$

- Similar suppression for D⁰ and D^{+/-}
- Spectra measurement was important for the total charm cross-section

STAR D*+ Production in Au+Au Collisions

- D*+ feeds down to D⁰ yields $D^{*+} \rightarrow D^{0} + \pi_{soft}^{+}$
- Hot medium effects:
 - D*+ life time could become shorter in hot medium
 - Re-scattering can lead to loss of yield

Phys. Rev. C (2018)97, 034918. Phys. Rev. C (2011)84, 034909

B Study from Non-prompt J/ψ & D⁰ & e

$$R_{AA}^{B \to J/\psi} = \frac{f_{Au+Au}^{B \to J/\psi}(data)}{f_{p+p}^{B \to J/\psi}(theory)} R_{AA}^{inc.\ J/\psi}(data) \qquad R_{AA}^{B \to D^0} = \frac{1}{\langle N_{coll} \rangle} \frac{f_{Au+Au}^{B \to D^0} \times dN_{Au+Au}^{incl.\ D^0}/dp_T}{dN_{FONLL}^{B \to D^0}/dp_T}$$

$$R_{AA}^{B \to D^{o}} = \frac{1}{\langle N_{coll} \rangle} \frac{f_{Au+Au}^{B \to D} \times dN_{Au+Au}^{mcl. D}/dp_{T}}{dN_{FONLL}^{B \to D^{o}}/dp_{T}}$$

$$R_{AA}^{B \to e} = \frac{f_{Au+Au}^{B \to e}(data)}{f_{p+p}^{B \to e}(data)} R_{AA}^{inc. e}(data) \qquad R_{AA}^{D \to e} = \frac{1 - f_{Au+Au}^{B \to e}(data)}{1 - f_{p+p}^{B \to e}(data)} R_{AA}^{inc. e}(data)$$

$$R_{AA}^{D \to e} = \frac{1 - f_{Au+Au}^{B \to e}(data)}{1 - f_{p+p}^{B \to e}(data)} R_{AA}^{inc. e}(data)$$

Note: R_{AA} references (data vs. theory) are different for different channels

By Directed flow (v1) due to EM fields

- The moving spectators can produce enormously large electromagnetic field (eB $\sim 10^{18}$ G at RHIC)
- Due to early production of heavy quarks $(\tau_{CQ} \sim 0.1 \text{ fm/c})$ positive and negative charm quarks (CQs) can get deflected by the initial EM force
- D^0 and D^0 v_1 can offer insight into the early time EM fields

Das et. al., Phys Lett B 768, 260 (2017)

© Directed flow (v1) due to hydro

• Heavy quarks are produced according to Ncoll density: symmetric in rapidity

Bulk

HF

- At non-zero rapidity, CQs production points are shifted from the bulk
- This can induce larger v₁ in CQs than light flavors
- Magnitude of $CQ v_1$ depends on the drag parameter used in this model

Chatterjee, Bozek: Phys Rev Lett 120, 192301 (2018)