

STAR W/Z Measurements

Jinlong Zhang (Stony Brook University) for the STAR Collaboration June 4th, 2019

Proton Spin Structure

- Proton spin puzzle: integral of quark polarization measured in DIS to be only ~30% of the proton spin
- Contributions from quark/antiquarks spin ($\Delta \Sigma$), gluon spin (ΔG) and possibly from the orbital angular momentum (*L*)

$$\langle S_p \rangle = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$$

Jaffe-Manohar 1990

Proton Spin Structure

3

Before RHIC, mostly polarized DIS

- Total quark spin contributions pinned down pretty well
- Flavor separation was accessible via semi-inclusive DIS but has to reply on Fragmentation Functions; additional uncertainty introduced
- No direct access to gluon spin

RHIC spin program

- Direct access to gluon spin
- Direct access to sea quarks
- Transverse spin

Proton Spin Structure

Before RHIC, mostly polarized DIS

- Total quark spin contributions pinned down pretty well
- Flavor separation was accessible via semi-inclusive DIS but has to reply on Fragmentation Functions; additional uncertainty introduced
- No direct access to gluon spin

RHIC spin program

- Direct access to gluon spin
- Direct access to sea quarks
- Transverse spin

Sea quark flavor asymmetry

- Surprisingly, flavor asymmetry was observed in *unpolarized* sea with $\overline{d}(x) > \overline{u}(x)$
- Different models explaining the flavor asymmetry give different predictions for *polarized* asymmetry.
- Critical Role of RHIC spin program is also here.

Kerns et al. (SeaQuest Collaboration), APS April Meeting 2016

Probing sea quarks via W production

Unique way to study proton spin-flavor structure:

- RHIC provides polarized proton beams.
- W boson selects quarks/antiquarks with specific helicity.
- STAR measures W boson via its leptonic decay.

Parity-violating longitudinal single-spin asymmetry:

From W A_L to quark/anti-quark spin

$$A_{L}^{W^{+}} \propto \frac{-\Delta u(x_{1})\bar{d}(x_{2}) + \Delta \bar{d}(x_{1})u(x_{2})}{u(x_{1})\bar{d}(x_{2}) + \bar{d}(x_{1})u(x_{2})} \simeq \begin{cases} -\frac{\Delta u(x_{1})}{u(x_{1})}, y_{W} \gg 0 \ (x_{1} \gg x_{2}) \\ \frac{\Delta \bar{d}(x_{1})}{\bar{d}(x_{1})}, y_{W} \ll 0 \ (x_{1} \ll x_{2}) \end{cases}$$

$$A_{L}^{W^{-}} \propto \frac{-\Delta d(x_{1})\bar{u}(x_{2}) + \Delta \bar{u}(x_{1})d(x_{2})}{d(x_{1})\bar{u}(x_{2}) + \bar{u}(x_{1})d(x_{2})} \simeq \begin{cases} -\frac{\Delta d(x_{1})}{d(x_{1})}, y_{W} \gg 0 \ (x_{1} \gg x_{2}) \\ \frac{\Delta \bar{u}(x_{1})}{\bar{u}(x_{1})}, y_{W} \ll 0 \ (x_{1} \ll x_{2}) \end{cases}$$

- Flavor separation at forward/backward rapidity; demand of

rapidity coverage.

Measuring W at STAR

- Isolated $e^+(e^-)$: isolated high momentum track + isolated EM cluster
- Undetected $v_e(\bar{v}_e)$: large missing energy opposite to $e^+(e^-)$
- Jacobian peak: $e^+(e^-) p_T$ peak around $M_W/2$ (~40 GeV)

Background Analysis

Residual backgrounds:

- W decay to tau and then to electron/positron
- Z to electron/positron pair but with one of them undetected
- QCD background

W/Z Total Cross Section

See Matt Posik's Poster

- Both NC and CC cross section measurements consistent with theoretical predication (CT14 NLO) and world data.
- Support the pQCD interpretations for asymmetry measurements.

W/Z Cross Section Ratio

See Matt Posik's Poster

- Complementary measurement to SeaQuest and E-866, for \sim 0.06 < x < \sim 0.4, constraining unpolarized sea quark distributions.
- W kinematics determined from data and simulation; Cornerstone for W A_N measurement

W/Z Differential Cross Section

See Matt Posik's Poster

- Differential cross section can also provide constraints on the unpolarized quark/anti-quark distributions.
- Preliminary results from 2011+2012+2013 released on DIS2019 by Matt Posik.

Earlier STAR W A_L results

- First W A_L from the initial 500 GeV run in 2009
- First eta-dependent results from 2011+2012 data

 $\Delta \overline{u} > \Delta \overline{d}$? Opposite to unpolarized sea. Motivation for more precise data.

WA_L from Run 2013

PRD 99, 051102(R) (2019)

- Most precise W A_L results from 2013 dataset.
- Consistent with published STAR results with 40-50% smaller uncertainties.
- Confirmed the larger than initially expected anti-up quark polarization first seen in the 2011+2012 data.

WA_L from Run 2013

PRD 99, 051102(R) (2019)

- Most precise W A_L results from 2013 dataset.
- Consistent with published STAR results with 40-50% smaller uncertainties.
- Confirmed the larger than initially expected anti-up quark polarization first seen in the 2011+2012 data.
- Combined results in comparison with theoretical predications.

Impacts of 2013 Results

- Delta u-bar is now known to be positive
- Delta d-bar is now known to be negative
- The flavor asymmetry $\Delta \overline{u} \Delta \overline{d}$ similar size but opposite sign to the unpolarized flavor asymmetry $\overline{u} \overline{d}$

Double-spin Asymmetry

Besides the single-spin asymmetries A_L , we have measured also the double-spin asymmetries A_{LL} .

 Can also provide access to u-bar, dbar polarization.

$$A_{LL}^{W^+} \propto \frac{\Delta u}{u} \frac{\Delta \bar{d}}{\bar{d}} \qquad A_{LL}^{W^-} \propto \frac{\Delta d}{d} \frac{\Delta \bar{u}}{\bar{u}}$$

- Positivity constraints using combination of A_L and A_{LL}

$$1 \pm A_{LL}^{W^{\pm}}(y_{W}) > |A_{L}^{W^{\pm}}(y_{W}) \pm A_{LL}^{W^{\pm}}(-y_{W})|$$

Z.Kang, J.Soffer, Phys.Rev.D83,114020 (2011)

$$A_{LL} \equiv \frac{(\sigma^{++} + \sigma^{--}) - (\sigma^{+-} + \sigma^{-+})}{(\sigma^{++} + \sigma^{--}) + (\sigma^{+-} + \sigma^{-+})}$$

Clearly, they are less sensitive/constraining than the single-spin asymmetries.

Z/gamma* A_L

Z bosons can be fully reconstructed

$$Z/\gamma^* \to e^+e^-$$

-

- $Z A_L$ is sensitive to the combination of u, u-bar, d, and d-bar polarizations.

PRD 99, 051102(R) (2019)

Experimentally very clean, but again by far less sensitive than $W A_L$.

Sivers' Sign-change

Sivers function: one of 8 leading-twist TMDs;
 describing correlation between transverse spin of the nucleon and transverse momentum of the quark

- Not universal: f_{1T}^{\perp} (SIDIS) = $-f_{1T}^{\perp}$ (DY or W/Z)
- Experimental test is critical for our understanding of TMDs and TMD factorization

First W/Z A_N results

STAR, PRL116(2016)132301

- First transverse W/Z A_N results favor the Sivers' sign-change from data with an integrated luminosity of ~25 pb⁻¹
- W kinematics fully reconstructed

Projection of 2017

Summary

- STAR W A_L measurement is concluded; final results:
 PRD 99, 051102(R) (2019)
 - First experimental observation of a flavor-asymmetry between anti-up and anti-down polarizations, opposite to the unpolarized distributions.
- STAR W/Z cross section ratio measurement can provide constraints on unpolarized sea quark distributions
- STAR W/Z A_N first results favor Sivers sign change.
- More precise results from 2017 dataset on W/Z $A_{\rm N}$ and cross section ratio are coming.

Backup

Charge Separation

- A_L has opposite sign for W⁺ and W⁻
- Wrong change-sign background, if any, thus causes bias and dilution of the signal
- Charge ID from TPC
- Negligibly small in the Barrel acceptance
- ~10% in the Endcap region; corrected for in the analysis

From WA_L to quark/anti-quark spin

- Example: W+ production, u quark from polarized proton beam;

Analogous for the other cases.