# Global polarization of hyperons from STAR experiment 

Takafumi Niida for the STAR Collaboration

喑號筑波大学

University of Tsukuba
筑波大学
宇宙史研究センター
Tomonaga Center for the History of the Universe

## Important features in non-central heavy-ion collisions

Strong magnetic field


Orbital angular momentum

$$
\begin{aligned}
B & \sim 10^{13} \mathrm{~T} \\
(e B & \left.\sim m_{\pi}^{2}(\tau \sim 0.2 \mathrm{fm})\right)
\end{aligned}
$$

## Global polarization


Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
S. Voloshin, nucl-th/0410089 (2004)
-Orbital angular momentum is transferred to particle spin
o Particles' and anti-particles' spins are aligned along angular momentum, $\boldsymbol{L}$

-Magnetic field align particle's spin o Particles' and antiparticles' spins are aligned in opposite direction along B due to the opposite sign of magnetic moment

Produced particles will be "globally" polarized along $\boldsymbol{L}$ and $\boldsymbol{B}$. $\boldsymbol{B}$ might be studied by particle-antiparticle difference.

## How to measure the polarization?

## Parity-violating weak decay of hyperons ("self-analyzing")

$\Lambda \rightarrow p+\pi^{-}$
Daughter baryon is preferentially emitted in the direction of hyperon's spin (opposite for anti-particle)

$$
\frac{d N}{d \cos \theta^{*}} \propto 1+\alpha_{H} \mathrm{P}_{\mathrm{H}} \cos \theta^{*}
$$

Рн: hyperon polarization
$\theta$ *: polar angle of daughter relative to the polarization direction in hyperon rest frame
$\alpha$ н: hyperon decay parameter

Note: $a_{H}$ for $\wedge$ recently updated (BESIII and CLAS) $a_{\wedge}=0.732 \pm 0.014, a_{\Lambda}=-0.758 \pm 0.012$
P.A. Zyla et al. (PDG), Prog.Theor.Exp.Phys.2020.083C01

* Published results are based on $a_{\Lambda}=-a_{\Lambda}=0.64 \pm 0.013$

New results use new a where existing results are scaled by $a_{o l d} / a_{n e w}$


## How to measure the "global" polarization?

"global" polarization : spin alignment along the initial angular momentum


Angular momentum direction can be determined by spectator deflection (spectators deflect outwards)
S. Voloshin and TN, PRC94.021901 (R)(2016)

$$
P_{\mathrm{H}}=\frac{8}{\pi \alpha_{\mathrm{H}}} \frac{\left\langle\sin \left(\Psi_{1}-\phi_{p}^{*}\right)\right\rangle}{\operatorname{Res}\left(\Psi_{1}\right)}
$$

$$
\psi_{1}: \text { azimuthal angle of } \mathrm{b}
$$

$$
\phi_{\rho}^{*}: \text { angle of daughter proton in } \wedge \text { rest frame }
$$

$$
\text { STAR, PRC76, } 024915 \text { (2007) }
$$

## Signal extraction with $\Lambda$ hyperons



## Feed-down effect

- $\sim 60 \%$ of measured $\wedge$ are feed-down from $\Sigma^{*} \rightarrow \wedge \pi, \Sigma 0 \rightarrow \wedge \gamma, \equiv \rightarrow \wedge \pi$
- Polarization of parent particle $R$ is transferred to its daughter $\Lambda$ (Polarization transfer could be negative!)
$C_{\wedge R}:$ coefficient of spin transfer from parent $R$ to $\wedge$
$S_{R}:$ parent particle's spin
$f_{\wedge R}:$ fraction of $\wedge$ originating from parent $R$
$\mu_{R}:$ magnetic moment of particle $R$

$$
\binom{\varpi_{c}}{B_{\mathrm{c}} / T}=\left[\begin{array}{ll}
\frac{2}{3} \sum_{R}\left(f_{\Lambda R} C_{\Lambda R}-\frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R}\right) S_{R}\left(S_{R}+1\right) & \frac{2}{3} \sum_{R}\left(f_{\Lambda R} C_{\Lambda R}-\frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R}\right)\left(S_{R}+1\right) \mu_{R} \\
\frac{2}{3} \sum_{\bar{R}}\left(f_{\overline{\Lambda \bar{R}}} C_{\overline{\Lambda \bar{R}}}-\frac{1}{3} f_{\bar{\Sigma}^{0} \bar{R}} C_{\bar{\Sigma}^{0} \bar{R}}\right) S_{\bar{R}}\left(S_{\bar{R}}+1\right) & \frac{2}{3} \sum_{\bar{R}}\left(f_{\overline{\Lambda \bar{R}}} C_{\overline{\Lambda \bar{R}}}-\frac{1}{3} f_{\bar{\Sigma}^{0} \bar{R}} C_{\bar{\Sigma}^{0} \bar{R}}\right)\left(S_{\bar{R}}+1\right) \mu_{\bar{R}}
\end{array}\right]^{-1}\binom{P_{\Lambda}^{\text {meas }}}{P_{\overline{\bar{\Lambda}}}^{\text {meas }}}
$$

| Decay | $C$ |
| :--- | :---: |
| Parity conserving: $1 / 2^{+} \rightarrow 1 / 2^{+} 0^{-}$ | $-1 / 3$ |
| Parity conserving: $1 / 2^{-} \rightarrow 1 / 2^{+} 0^{-}$ | 1 |
| Parity conserving: $3 / 2^{+} \rightarrow 1 / 2^{+} 0^{-}$ | $1 / 3$ |
| Parity-conserving: $3 / 2^{-} \rightarrow 1 / 2^{+} 0^{-}$ | $-1 / 5$ |
| $\Xi^{0} \rightarrow \Lambda+\pi^{0}$ | +0.900 |
| $\Xi^{-} \rightarrow \Lambda+\pi^{-}$ | +0.927 |
| $\Sigma^{0} \rightarrow \Lambda+\gamma$ | $-1 / 3$ |

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

Primary $\wedge$ polarization will be diluted by 15\%-20\%
(model-dependent)
This also suggests that the polarization of daughter particles can be used to measure the polarization of its parent! e.g. $\overline{\text { I }}, \Omega$

## First observation in BES-I

STAR, Nature 548, 62 (2017)


Positive polarization signal at lower energies!

- Ph looks to increase in lower energies

Becattini, Karpenko, Lisa, Upsal, and Voloshin,

$$
\begin{aligned}
& P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T}+\frac{\mu_{\Lambda} B}{T} \\
& P_{\bar{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T}-\frac{\mu_{\Lambda} B}{T}
\end{aligned}
$$

PRC95.054902 (2017)

$$
\begin{aligned}
\omega & =\left(P_{\Lambda}+P_{\bar{\Lambda}}\right) k_{B} T / \hbar \\
& \sim 0.02-0.09 \mathrm{fm}^{-1} \\
& \sim 0.6-2.7 \times 10^{22} \mathrm{~s}^{-1}
\end{aligned}
$$

- The most vortical fluid!
$\mu_{\wedge}: \wedge$ magnetic moment
T : temperature at thermal equilibrium ( $\mathrm{T}=160 \mathrm{MeV}$ )

Hint of the difference between $\wedge$ and anti- $\wedge \mathrm{P}_{\mathrm{H}}$ - Effect of the initial magnetic field? (discussed later)

## Precise measurements at $\sqrt{ } s_{N N}=200 \mathrm{GeV}$



Confirmed energy dependence with new results at 200 GeV - $>5 \sigma$ significance utilizing 1.5 B events

- partly due to stronger shear flow structure at lower $\sqrt{ } \mathrm{S}_{\mathrm{NN}}$ because of baryon stopping

$$
\begin{aligned}
& P_{H}(\Lambda)[\%]=0.277 \pm 0.040(\text { stat }) \pm_{0.049}^{0.039}(\mathrm{sys}) \\
& P_{H}(\bar{\Lambda})[\%]=0.240 \pm 0.045(\text { stat }) \pm_{0.045}^{0.061}(\mathrm{sys})
\end{aligned}
$$

Theoretical models can describe the data well
I. Karpenko and F. Becattini, EPJC(2017)77:213, UrQMD+vHLLE
H. Li et al., PRC96, 054908 (2017), AMPT
Y. Sun and C.-M. Ko, PRC96, 024906 (2017), CKE
Y. Xie et al., PRC95, 031901 (R) (2017), PICR
D.-X. Wei et al., PRC99, 014905 (2019), AMPT

## Collection of recent results

ALICE, PRC101.044611 (2020)
F. Kornas (HADES), SQM2019

- STAR preliminary at 27 and 54.4 GeV
- ALICE at 2.76 and 5.02 TeV
- Expected signal is of the order of current statistical uncertainty
- HADES at 2.4 GeV
- Large uncertainty but still preliminary
- Hopefully reduce systematic uncertainty


## Collection of recent results

ALICE, PRC101.044611 (2020)
F. Kornas (HADES), SQM2019
J. Adams, K. Okubo (STAR), QM2019


thermal vorticity


Energy dependence of kinematic and thermal vorticity with UrQMD X.-G. Deng et al., PRC101. 064908 (2020)

HADES: 2-3 GeV STAR FXT: 3-7.7 GeV STAR BES-II: 7.7-19 GeV

## A possible probe of B-field

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

$$
\begin{aligned}
& P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T}+\frac{\mu_{\Lambda} B}{T} \\
& P_{\bar{\Lambda}} \simeq \frac{1}{2} \frac{\omega^{\prime}}{T}-\frac{\mu_{\Lambda} B}{T} \\
& \mu_{\wedge}: \wedge \text { magnetic moment }
\end{aligned}
$$

$$
\begin{aligned}
B= & \left(P_{\Lambda}-P_{\bar{\Lambda}}\right) T /\left(2 \mu_{\Lambda}\right) \\
& \sim 2 \times 10^{11}[\mathrm{~T}] \\
e B & \sim 10^{-2} \mathrm{~m}_{\pi}^{2} \\
& \quad \Delta \mathrm{P}_{\wedge \sim 0.5 \%}, \mathrm{~T}=160 \mathrm{MeV}
\end{aligned}
$$

McLerran and Skokov, Nucl. Phys. A929, 184 (2014)



Conductivity increases lifetime.

- Based on thermal model, B-field at kinetic freeze-out could be probed by $\wedge$-anti^ splitting
- Current results are consistent with zero (except 7.7 GeV )
- But the splitting could be also due to other effects...


## Need caution for the interpretation

- Initial magnetic field
- Effect of chemical potential (expected to be small)
R. Fang et al.,, PRC94, 024904 (2016)
- Rotating charged fluid produces B-field with longer lifetime
X. Guo, J. Liao, and E. Wang, PRC99.021901(R) (2019)
- Spin interaction with the meson field generated by the baryon current
L. Csernai, J. Kapusta, and T. Welle, PRC99.021901(R) (2019)
- Different space time distributions and freeze-out of $\wedge$ and anti $\wedge$
O. Vitiuk, L.Bravina, E. Zabrodin, PLB803(2020)135298

X. Guo, J. Liao, and E. Wang, PRC99.021901(R) (2019)


L. Csernai et al., PRC99.021901(R) (2019)


## Differential measurements: centrality



In most central collision $\rightarrow$ no initial angular momentum
The polarization decreases in more central collisions.
Similar trend was confirmed at lower energies.

## Differential measurements: $p_{T}$

STAR, PRC98, 014910 (2018)


- Naive expectation of smaller $\mathrm{P}_{\mathrm{H}}$ due to scattering at low $\mathrm{DT}^{2}$, fragmentation at high $\mathrm{p}_{\mathrm{T}}$
- No clear Pt dependence with current precision



## Differential measurements: rapidity



I.Karpenko and F.Becattini, $\operatorname{EPJ}(2017) 77.213$

Energy dependence of vorticity vs. rapidity

- Baryon stopping and velocity profile in the initial state at given acceptance
But the predicted polarization trend differs among models




Y

Y.Xie, D.Wang, and L.P.Csernai, RPJ(2020)80:39 H.Z.Wu et al, PRResearch1.033058(2019)
Z.T.Liang et al., arXiv:1912.10223

## Differential measurements: rapidity



No strong rapidity dependence within $|n|<1$.
This can be explored further with iTPC(|n|<1.5) and Forward upgrade (2023-).

## Differential measurements: azimuthal angle





I. Karpenko and F. Becattini, EPJC(2017)77.213
D. Wei, W. Deng, and X. Huang, PRC99. 014905 (2019)
"T-vorticity" may explain the data?
H. Wu et al., PR.Research1. 033058 (2019)

- The data shows larger polarization for in-plane, while
many models predict the opposite, i.e. larger for out-of-plane.
- Not fully understood yet


## Differential measurements: charge asymmetry



$$
\mu_{\mathrm{v}} / T \propto \frac{\left\langle N_{+}-N_{-}\right\rangle}{\left\langle N_{+}+N_{-}\right\rangle}=A_{\mathrm{ch}}
$$

Chiral Separation Effect $\mathbf{J}_{5} \propto e \mu_{\mathrm{v}} \mathbf{B}$


B-field + massless quarks + non-zero $\mu_{v} \rightarrow$ axial current $J_{5}$

- Ach dependence observed
- Slopes of $\Lambda$ and anti- $\wedge$ seem to be opposite ( $\sim 2 \sigma$ level)
- Possible contribution from axial charge or
- Quark vector chemical potential may explain the data

Sun and Ko, INT20-1-c

## Other particles to measure polarization?

P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, $083 \mathrm{C01}$ (2020)

|  | Mass <br> $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$ | $\mathrm{c} \mathrm{\tau}$ <br> $(\mathrm{~cm})$ | decay <br> mode | decay <br> parameter | magnetic <br> moment <br> $\left(\mu_{\mathrm{N}}\right)$ | spin |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\Lambda$ (uds) | 1.115683 | 7.89 | $\Lambda->\pi p$ <br> $(63.9 \%)$ | $0.732 \pm 0.014$ | -0.613 | $1 / 2$ |
| ミ- (dss) | 1.32171 | 4.91 | $\Xi->\wedge \pi^{-}$ <br> $(99.887 \%)$ | $-0.401 \pm 0.010$ | -0.6507 | $1 / 2$ |
| $\Omega$ (sss) | 1.67245 | 2.46 | $\Omega->\wedge K^{-}$ <br> $(67.8 \%)$ | $0.0157 \pm 0.002$ | -2.02 | $3 / 2$ |

Natural candidates would be $\equiv$ and $\Omega$ hyperons.

- Different spin and magnetic moments
- Less feed-down in 三 and $\Omega$ compared to $\wedge$
- Could be different freeze-out
- Different valence s-quarks
W.-T. Deng and X.-G. Huang, PRC93. 064907 (2016)


Based on thermal model:
$\mathrm{P}(\mathrm{s}=1 / 2) \sim \omega /(2 \mathrm{~T}), \mathrm{P}(\mathrm{s}=3 / 2) \sim 4 \omega /(5 \mathrm{~T})$
F.Becattini et al., PRC95.054902 (2017)

## 三 and $\Omega$ polarization measurements

$$
\frac{d N}{d \Omega^{*}}=\frac{1}{4 \pi}\left(1+\alpha_{H} \mathbf{P}_{H}^{*} \cdot \hat{\boldsymbol{p}}_{B}^{*}\right)
$$

Getting difficult due to smaller decay parameter for $\equiv$ and $\Omega \ldots$

$$
\alpha_{\Lambda}=0.732, \alpha_{\Xi^{-}}=-0.401, \alpha_{\Omega^{-}}=0.0157
$$

spin 1/2
Polarization of daughter $\wedge$ in a weak decay of $\equiv$ : (based on Lee-Yang formula)
T.D. Lee and C.N. Yang, Phys. Rev. 108.1645 (1957)

$$
\begin{aligned}
& \mathbf{P}_{\Lambda}^{*}=\frac{\left(\alpha_{\Xi}+\mathbf{P}_{\Xi}^{*} \cdot \hat{\boldsymbol{p}}_{\Lambda}^{*}\right) \hat{\boldsymbol{p}}_{\Lambda}^{*}+\beta_{\Xi} \mathbf{P}_{\Xi}^{*} \times \hat{\boldsymbol{p}}_{\Lambda}^{*}+\gamma_{\Xi} \hat{\boldsymbol{p}}_{\Lambda}^{*} \times\left(\mathbf{P}_{\Xi}^{*} \times \hat{\boldsymbol{p}}_{\Lambda}^{*}\right)}{1+\alpha_{\Xi} \mathbf{P}_{\Xi}^{*} \cdot \hat{\boldsymbol{p}}_{\Lambda}^{*}} \\
& \mathbf{P}_{\Lambda}^{*}=C_{\Xi-\Lambda} \mathbf{P}_{\Xi}^{*}=\frac{1}{3}\left(1+2 \gamma_{\Xi}\right) \mathbf{P}_{\Xi}^{*} . \\
& C_{\Xi-\Lambda}=+0.927, \alpha^{2}+\beta^{2}+\gamma^{2}=1
\end{aligned}
$$

## spin 3/2

Similarly, daughter $\wedge$ polarization from $\Omega$ :

$$
\mathbf{P}_{\Lambda}^{*}=C_{\Omega^{-}} \mathbf{P}_{\Omega}^{*}=\frac{1}{5}\left(1+4 \gamma_{\Omega}\right) \mathbf{P}_{\Omega}^{*} .
$$

Here $\boldsymbol{\gamma}_{\Omega}$ is unknown.
Time-reversal violation parameter $\beta$ would be small, then the polarization transfer $\mathrm{C}_{\Omega \wedge}$ leads to:

$$
C_{\Omega \Lambda} \approx+1 \text { or }-0.6
$$

Parent particle polarization can be studied by measuring daughter particle polarization!

## E global polarizations at $\sqrt{s_{N N}}=200 \mathrm{GeV}$


＊published results are rescaled by $a_{o l a} / a_{\text {new }} \sim 0.87$

三 $\mathrm{P}_{\mathrm{H}}$ by analyzing daughter $\wedge$ distributions －less sensitive due to smaller $a_{=}=-0.4$ than $a_{\wedge}=0.732$

三 $\mathrm{P}_{\mathrm{H}}$ via daughter $\wedge \mathrm{P}_{\mathrm{H}}$（by granddaughter proton） with the polarization transfer $\mathrm{C}_{\equiv \wedge=+0.927}$
－positive polarization with $2.2 \sigma$ level
－slightly larger than inclusive $\wedge$ PH
close to AMPT prediction
W．－T．Deng and X．－G．Huang，PRC93．064907（2016）

Naive expectations in 三 vs．$\wedge \mathrm{P}_{\mathrm{H}}$
－Lighter particles could be more polarized（ $\Xi<\boldsymbol{\Lambda}$ ）
－Earlier freeze－out（of multi－strangeness）
leads to larger $\mathrm{PH}_{\mathrm{H}}(\overline{\mathrm{I}} \boldsymbol{\mathrm { N }}$ ）
O．Vitiuk，L．V．Bravina，and E．E．Zabrodin，PLB803（2020）135298 Feed－down：$\sim 15-20 \%$ reduction for primary $\wedge P_{H}$

## E global polarizations at $\sqrt{ } s_{N N}=200 \mathrm{GeV}$ and 27 GeV


＊published results are rescaled by $a_{o l d} / a_{n e w} \sim 0.87$

三 $\mathrm{P}_{\mathrm{H}}$ by analyzing daughter $\wedge$ distributions －less sensitive due to smaller $a_{==-0.4}$ than $a_{\wedge}=0.732$

三 $\mathrm{P}_{\mathrm{H}}$ via daughter $\wedge \mathrm{P}_{\mathrm{H}}$（by granddaughter proton） with the polarization transfer $\mathrm{C}_{\equiv \wedge=+0.927}$
－positive polarization with $2.2 \sigma$ level
－slightly larger than inclusive $\wedge$ PH
close to AMPT prediction
W．－T．Deng and X．－G．Huang，PRC93．064907（2016）

Naive expectations in 三 vs．$\wedge \mathrm{P}_{\mathrm{H}}$
－Lighter particles could be more polarized（ $(\mathbf{E} \boldsymbol{\Lambda}$ ）
－Earlier freeze－out（of multi－strangeness）
leads to larger $\mathrm{PH}_{\mathrm{H}}(\mathbf{\Xi}>\boldsymbol{\Lambda})$
O．Vitiuk，L．V．Bravina，and E．E．Zabrodin，PLB803（2020）135298 Feed－down：$\sim 15-20 \%$ reduction for primary $\wedge P_{H}$

## $\Omega$ global polarizations at $\sqrt{s_{N N}}=200 \mathrm{GeV}$



* published results are rescaled by $a_{o l d} / a_{n e w} \sim 0.87$
$\Omega \mathrm{P}_{\mathrm{H}}$ via daughter $\wedge \mathrm{P}_{\boldsymbol{H}}$ assuming the polarization transfer $\mathrm{C}_{\Omega \wedge}=+1$
- Large uncertainty, to be improved in future analysis

Based on the vorticity picture, the data seems to favor $C_{\Omega \wedge}=+1\left(\gamma_{\Omega}=+1\right)$ rather than $C_{\Omega \wedge}=-0.6\left(\gamma_{\Omega}=-1\right)$

* In other words, $\mathrm{y}_{\Omega}$ can be measured in HIC assuming the global polarization
- Also close to AMPT expectation


## Centrality dependence of $\Xi P_{H}$



三 $P_{H}$ via daughter $\wedge P_{H}$ seems to increase in peripheral events，as seen in $\wedge \mathrm{P}_{\mathrm{H}}$ at 200 GeV
－No significant difference between ミ and 三bar，therefore results are combined
－Qualitatively consistent with the centrality dependence of vorticity predicted in models

Y．Jiang，Z．W．Lin，and J．Liao，PRC94．044910（2016）

[^0]
## Global spin alignment of vector mesons

Angular distribution of the decay products can be written with spin density matrix $\rho_{n n}$.

$$
\begin{aligned}
\frac{d N}{d \cos \theta^{*}} & \propto \rho_{0,0}\left|Y_{1,0}\right|^{2}+\rho_{1,1}\left|Y_{1,-1}\right|^{2}+\rho_{-1,-1}\left|Y_{1,1}\right|^{2} \propto \rho_{0,0} \cos ^{2} \theta^{*}+\frac{1}{2}\left(\rho_{1,1}+\rho_{-1,-1}\right) \sin ^{2} \theta^{*} \\
& \propto\left(1-\rho_{0,0}\right)+\left(3 \rho_{0,0}-1\right) \cos ^{2} \theta^{*} \\
\rho_{00} & =\frac{1}{3}-\frac{8}{3}\left\langle\cos \left[2\left(\phi_{p}^{*}-\Psi_{\mathrm{RP}}\right)\right]\right\rangle
\end{aligned}
$$

| Species | $\mathrm{K}^{* 0}$ | $\varphi$ |
| :---: | :---: | :---: |
| Quark content | ds | $\mathrm{s} \overline{\mathrm{s}}$ |
| Mass (MeV/c$)$ | 896 | 1020 |
| Lifetime <br> (fm/c) | 4 | 45 |
| Spin (JP) | $1-$ | $1-$ |
| Decays | $\mathrm{K} \pi$ | KK |
| Branching ratio | $\sim 100 \%$ | $66 \%$ |

Deviation from $1 / 3$ in $\rho_{00}$ indicates spin alignment.

* sign of the polarization cannot be determined.

Therefore it's called "spin alignment measurement"
rather than "polarization measurement"
Z.-T. Liang and X.-N. Wang, PRL94.102301(2005)
Y. Yang et al., PRC97.034917(2018)

Theoretical expectation for $\rho_{00}$

| Vorticity |  |
| :--- | :--- |
| recombination <br> fragmentation | $\rho_{00}<1 / 3$ |
| $\rho_{00}>1 / 3$ |  |
| Magnetic field | $\rho_{00}>1 / 3$ <br> (for neutral vector mesons) |

## Results from LHC and RHIC

ALICE, PRL125.012301 (2020)


STAR, QM18, QM19


- Large deviation from $1 / 3$, which cannot be explained by the vorticity picture

$$
\rho_{00}=1 /\left[3+(\omega / T)^{2}\right]
$$

-The deviation in opposite way between:口K* and $\phi$ at RHIC - LHC and RHIC for $\phi$

Mean field of $\phi$ meson may play a role? Does it change from RHIC to LHC only for $\phi$ ?
X. Sheng, L. Oliva, and Q. Wang, PRD101.096005(2020) X. Sheng, Q.Wang, and X. Wang, PRD102.056013 (2020)

## Outlook

- More precise measurements will be done in the following years
o High statistics data of BES-II 7.7-19.6 GeV and FXT 3-7.7 GeV
- Isobaric collision data ( $\mathrm{Ru}+\mathrm{Ru}, \mathrm{Zr}+\mathrm{Zr}$ ), $\sim 10 \%$ difference in B-field
o Forward detectors in Run-2023 Au+Au 200 GeV
BUR2020, STAR Note SN0755



## Summary

- Global polarization of $\wedge$ has been observed at $\sqrt{ } \mathrm{S}_{\mathrm{NN}}=7.7-200 \mathrm{GeV}$
- Most vortical fluid ( $\omega \sim 10^{21} \mathrm{~s}^{-1}$ ) created in heavy-ion collisions
- Energy dependence, increasing in lower $\sqrt{ } \mathrm{SNN}_{\mathrm{NN}}$, is captured well by theoretical models
- Azimuthal angle dependence is not fully understood yet
- First measurements of $\equiv$ and $\Omega$ global polarizations at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=27$ and 200 GeV
- Positive signal of $\equiv$ polarization, comparable to or slightly larger than $\Lambda$, has been observed
- Qualitatively consistent with AMPT predictions
- Current result of $\Omega$ polarization has large uncertainty, which can be improved in future analysis
- Global spin alignment shows larger deviation from 1/3
$\circ \phi$ meson field may explain this large deviation?
- Different trends between RHIC and LHC; $\phi$ meson needs to be understood

There are still many open questions and more precise results are needed.

## Back up

## 三 global polarization at $\sqrt{s_{N N}}=27 \mathrm{GeV}$




* published results are rescaled by $a_{o l d} / a_{\text {new }} \sim 0.87$
- 三 polarization signal can be also seen at 27 GeV , comparable to or slightly larger than inclusive $\wedge$.
- No clear centrality dependence with current precision.


## Polarization along the beam direction

$P_{z} \propto\left\langle\cos \theta_{p}^{*}\right\rangle$

$$
\phi-\Psi_{2}[\mathrm{rad}]
$$

- Sine structure as expected from the elliptic flow
$\square$ Some models cannot describe the sign but some can do. Note that they reasonably describe "global" Рн.
- F. Becattini and I. Karpenko, PRL.120.012302 (2018)
- X. Xia et al., PRC98.024905 (2018)
- Y. Sun and C.-M. Ko, PRC99, 011 1903(R) (2019)
- Y. Xie, D. Wang, and L. P. Csernai, Eur. Phys. J. C (2020) 80:39
- W. Florkowski et al., Phys. Rev. C 100, 054907 (2019)
- H.-Z. Wu et al., Phys. Rev. Research 1, 033058 (2019)


## Disagreement in $P_{z}$ sign

## Opposite sign

- UrQMD IC + hydrodynamic model
F. Becattini and I. Karpenko, PRL. 120.012302 (2018)
- AMPT
X. Xia, H. Li, Z. Tang, Q. Wang, PRC98. 024905 (2018)


## Same sign

- Chiral kinetic approach
Y. Sun and C.-M. Ko, PRC99, 01 1903(R) (2019)
- High resolution (3+1)D PICR hydrodynamic model Y. Xie, D. Wang, and L. P. Csernai, EPJC80.39 (2020)
- Blast-wave model
S. Voloshin, EPJ Web Conf.171, 07002 (2018), STAR, PRL123.13201

Partly (one of component showing the same sign)

- Glauber/AMPT IC + (3+1)D viscous hydrodynamics H.-Z. Wu et al., Phys. Rev. Research 1, 033058 (2019)



Chiral kinetic approach
Au+Au @ 200 GeV, 30-40\%


PICR model $\Pi_{0 z}\left(p_{x}, p_{y}\right)$


- Thermal model
W. Florkowski et al., Phys. Rev. C 100, 054907 (2019)

Incomplete thermal equilibrium of spin degree of freedom?

## $p_{\text {т }}$ and centrality dependence of $P_{z}$ modulation



BW parameters obtained with HBT: STAR, PRC71.044906 (2005)


- No strong $\mathrm{P}_{\mathrm{T}}$ dependence but a hint of drop-off at $\mathrm{P}_{\mathrm{T}}<1 \mathrm{GeV} / \mathrm{C}$
- Strong centrality dependence as in $\mathrm{v}_{2}$
- Blast-Wave model as a simple estimate for kinematic vorticity can describe the data


[^0]:    ＊published results are rescaled by aold $/ a_{n e w} \sim 0.87$

