STAR Run22 Report

Zilong Chang for the STAR collaboration

The Center for Exploration of Energy and Matter (CEEM), Indiana University

June 9th, 2022

Office of Science

rom RHIC to EIC

Outline

- Physics goals
- Overview
- STAR operations
- Conclusion

Physics goals

 Commissioning the new forward detector upgrade, small-strip Thin Gap Chamber (sTGC), Forward Silicon Tracker (FST), and Forward Calorimeter System (FCS), 2.5 < η < 4, facing the blue beam

Beam use request for run22

\sqrt{s} (GeV)	Species	Polarization	Run Time	Sampled Luminosity (pb^{-1})	Polarization (%)
510	рр	Transverse	16 weeks	400	$\geq 55\%$

• Study the transverse spin structure of the proton, for example, probing high-x

valence quarks up to $x \sim 0.5$ through Collins and Sivers asymmetries

More from O. Eyser's talk on Wednesday

Zilong Chang

RHIC/AGS Annual Users' Meeting, June, 2022

Installation of forward detectors

• FCS: installed in 2020 and commissioned during run21

7m from IP; E-cal + H-cal

New trigger/readout electronics (DEP boards)

• FST and sTGC installed in 2021

FST, 3 disks, NOVEC cooling system

sTGC, 4 planes, CO_2 + n-pentane (flammable,

and pentane is a liquid at room temperature)

Despite COVID and lab limited operation mode, all finished before RHIC ring cool-down!

Timeline

- 11/9/21, STAR two-person watch shift started
- 11/15, original cool-down start date. Blue ring cool-down started
- $\bullet\,$ 11/16, STAR hybrid four-person shift started, with three persons onsite + one online
- 11/29, yellow cool down started, delayed by 13 days due to cryo-control upgrade
- 12/3, broken coils of blue snake at 9 o'clock (Bi9-2, inner helical dipole) from power outage
 - Ran partial blue snake (with Bi9-1,4) at 85% of spin rotation
- 12/15, first physics data taking (Mid-rapidity)
- 12/20, physics running declared (18 days from the first injection)
- 12/25, full physics data taking (Mid-rapidity + forward rapidity)
- 1/2, beam energy lowered from 254.87 to 254.21 GeV to maximize vertical component of the proton spin
- 1/12, AGS Siemens motor generator (MG) failed, and was switched to backup Westinghouse MG, lower beam polarization out of AGS
- 3/8, switch back to Siemens MG
- 4/4, 2-week extension
- 4/18, run ended

Zilong Chang

RHIC/AGS Annual Users' Meeting, June, 2022

Beam polarization and its decay

- Absolute polarizations from H-jet
- $< P_B > = 51\%$ and $< P_Y > = 50\%$, lower than requested in BUR

Blue and yellow beam polarization decay from pC-CNI polarimeter

Beam polarizations at STAR

- Monitor spin direction relative to the vertical axis and cross-check beam polarizations to make sure their angle and amplitude stable, e.g. when Siemens MG failed
- STAR Zero Degree Calorimeter (ZDC): SMD strips to determine the horizontal and vertical positions in the transverse plane

- Due to partial snake in blue beam (pointing to the forward detectors), smaller $E_{beam} = 254.21$ GeV allows the polarization direction closer to the vertical axis than $E_{beam} = 254.87$ GeV
- $\bullet\,$ From rotator scans: $\sim 10\%$ polarization observed in the longitudinal direction

Beam current and collision rates

For a given fill

8-hour fill to maintain luminosity

• Low luminosity runs $O(10^3)$ for forward detector alignments and precise

cross-section measurements

Zilong Chang

RHIC/AGS Annual Users' Meeting, June, 2022

Luminosity monitoring

Vernier scan, collision rates vs. relative beam movements in the horizontal and

vertical plane respectively

- $\bullet\,$ Measure the beam overlapping size, and derive the corresponding effective cross-section $\sigma_{e\!f\!f}$
- $\bullet~\sigma_{\rm eff}$ will be used to calculate luminosities from the monitored collision rates during normal data taking

• From 16 vernier scans throughout the entire run, $\sigma_{eff} = 1.86 \text{ mb}$,

(corresponding to the STAR ZDC coincidence rate after accidental and multiple corrections)

Zilong Chang

RHIC/AGS Annual Users' Meeting, June, 2022

Delivered instantaneous luminosity

Average Delivered Luminosity [10³² cm⁻²s⁻¹] Average Delivered Luminosity [10³² cm⁻²s⁻¹] 1.8 Machine development 1.6 1.4 1.2 0.8 0.6 0.4 0.2 32900 33000 33100 33200 33300 Fill Number Mon Apr 18 14:46:25 2022

• Average delivered luminosity, $L = 1.3 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$, better than the 2017 run average, $L = 1.2 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$

 More stable luminosity after machine development, including reducing beam backgrounds due to high emittance, and work on tune/chromaticity, injection, and so on

Zilong Chang

RHIC/AGS Annual Users' Meeting, June, 2022

STAR physics triggers and sub-systems

- More than 40 physics triggers
- Sub-systems ran close to their limits
- Total trigger rates \sim 3 kHz
- Forward triggers:
 - $\sim 1~{
 m kHz}$ for Drell-Yan events
 - O(100) Hz trigger rates for other

triggers such as jet patch triggers

- Mid-rapidity triggers: "Barrel EM-cal high tower 3" (BHT3) for W-boson events, ~ 60 Hz
- Low dead-time for STAR

sub-systems with auto-recoveries built: <10%

RHIC/AGS Annual Users' Meeting, June, 2022

STAR data taking performance

Maximize data taking efficiency

- Sub-systems are ready before "Physics on"
- 2 Respond promptly to events such as β squeezes and polarization measurements
- Include the di-muon trigger when beam background is low
- Take local ZDC polarimetry data while preparing sub-systems for beam dump
- Daily sub-system calibration and pedestal data
- Hours of data taking per day: \sim 12 hours
- TCU live time (for BHT3): ~ 75%

RHIC/AGS Annual Users' Meeting, June, 2022

Mid-rapidity physics: barrel EM-calorimeter HT triggers

- Barrel EM-calorimeter HT ADC vs. trigger patch ID
- The number of BHT1 triggered events vs. bunch crossing ID

Forward calorimeter system

- FCS real-time quality-assurance plot
- Critical detector to trigger

forward Drell-Yan events, gain updated weekly

 The number of FCS Drell-Yan triggered events vs. bunch crossing ID

• H-cal, E-cal and Pre-shower ADC vs.

Zilong Chang

Forward tracking detectors

Real-time quality-assurance plots monitored by shift crew

FST

Run22 final score

- Physics data taking period: 57 days (\sim 16 "physics week")
- Total sampled luminosity: $\int L = 452$, pb^{-1} (113%)
- Figure of merit $Fom = \int P^2 \cdot L = 117.2 \ pb^{-1}$, 98% of the goal for mid-rapidity BHT3 triggered events
- Fom = 126 pb^{-1} (106%) for forward rapidity FCS-DY triggered events

Looking forward: Run23+

Beam use request, assuming 28 cryo weeks (24 physics weeks) per year

\sqrt{s} (GeV)	Species	Number of events / Sampled Luminosity	Year
200	Au + Au	20 B / 40 <i>nb</i> ⁻¹	2023+2025
200	p + p	235 pb ⁻¹	2024
200	p + Au	$1.3 \ pb^{-1}$	2024

• High luminosity for rare probe/high- p_T physics + controlled low luminosity for

minimum bias physics

- High-p_T: ZDC ~ 100 kHz (29 physics weeks)
- Minimum bias: leveled ZDC rate at \sim 10 kHz (19 physics weeks)
- Mix two modes depending on beam conditions

• Forward upgrade detectors are ready

- Run22: despite rough times at the beginning, we achieved our goals
- No significant issues with STAR sub-systems and recorded data
- Forward detectors are successfully commissioned and are performing well
- Hybrid shift mode worked efficiently during the COVID era
- Thanks for all the work done by CAD to make Run22 successful

Comparison of BHT3 and ZDC rates at STAR

No indication of change of effective ZDC cross section at STAR