RHIC & AGS Annual Users' Meeting 2021

This meeting will be held as a virtual event. June 8–11, 2021

Recent Open Heavy Flavor and Quarkonia Measurements from STAR

Yuanjing Ji (for the STAR collaboration) Lawrence Berkeley National Laboratory

Outline

Open heavy flavor measurements

- D_s^{\pm} and D^{\pm} production in Au+Au @ 200 GeV
- $c, b \rightarrow e R_{AA}$ and v_2 in Au+Au @ 200 GeV
- e^{HF} v_2 in Au+Au @ 27 and 54.4 GeV

Quarkonium measurements

- J/ψ production in Au+Au @ 54.4 GeV
- J/ψ and Υ production in p+Au @ 200 GeV
- J/ψ production in jets in p+p @ 500 GeV

Outlook for Run 2023-2025

The Solenoid Tracker At RHIC (STAR)

TPC - momentum and PID (dE/dx) TOF - PID $(1/\beta)$ BEMC - trigger on and identify high p_T electron HFT - excellent pointing resolution for secondary vertex reconstruction MTD - trigger on and identify muons

Yuanjing Ji, RHIC & AGS AUM 2021

Why Heavy Quarks?

- $m_{c,b} \gg T_{QGP}$, $m_{c,b} \gg \Lambda_{QCD}$
 - Dominantly produced during initial hard scatterings
 - Cross section is calculable in pQCD

Why Heavy Quarks?

- $m_{c,b} \gg T_{QGP}$, $m_{c,b} \gg \Lambda_{QCD}$
 - Dominantly produced during initial hard scatterings
 - Cross section is calculable in pQCD

SIAR

- Significant enhancement of D_s^+/D^0 yield ratio compared to PYTHIA and p+p @ 7 TeV
 - No strong centrality dependence
 - Comparable to Pb+Pb @ 5.02 TeV
- Yuanjing Ji, RHIC & AGS AUM 2021

Models incorporating coalescence with enhanced

strangeness production qualitatively describe data

Why Heavy Quarks?

- $m_{c,b} \gg T_{QGP}$, $m_{c,b} \gg \Lambda_{QCD}$
 - Dominantly produced during initial hard scatterings
 - Cross section is calculable in pQCD

D^{\pm} Production in Au+Au @ 200 GeV

0.4 0.3

 $c, b \rightarrow e$ in Au+Au @ 200 GeV

Photonic e

Hadrons

c→e

Extraction of $c, b \rightarrow e$ with template fit to log of 3D ٠ DCA distribution Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV}$ (a) Electrons

st 10⁻¹ Normalized Units 10⁻² 10⁻⁴

 10^{-5}

0-80% $p_{_{\rm T}} > 2 \, {\rm GeV}/c$

-0.5

(0.04)

Events /

300

100

Pull

Electron PID improved with likelihood MVA classifier

e⁺

Primary Vertex 🔅

 v_e

10%

 B^{0}

Secondary

Vertex

DCA

0.5

0

Likelihood Output

0

- Bottom fraction significantly enhanced in central Au+Au collisions at 200 GeV
- Consistent with p+p and FONLL in peripheral collisions.

4

8

 $p_{_{\rm T}}$ (GeV/c)

0-20%

20-40%

40-80%

FONLL

6

p+p √s=200 GeV

A. Buzzatti et al., PRL 108, 022301 (2012)

Why Heavy Quarks?

- $m_{c,b} \gg T_{QGP}$, $m_{c,b} \gg \Lambda_{QCD}$
 - Dominantly produced during initial hard scatterings
 - Cross section is calculable in pQCD

- $c \rightarrow e v_2$ consistent with STAR D^0 measurement folded to decayed electrons
- Non-zero $b \rightarrow e v_2$ with significance >3 σ
- Duke calculations are consistent with data considering non-flow

e^{HF} **Elliptic Flow at Low Energies**

STAR Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV}$

10-40%

/ n

0.1

0.05

Anisotropy Parameter, v₂

>~

Anisotropy Parameter,

 $\bullet D^0$

 $\Delta \Xi$

 $\circ \Lambda$

 $\Box K_{c}$

- How about charm quarks flow at lower energies?
- Provide new insights into temperature dependence of charm ۲ quark $2\pi TD_s$ from HF electrons v₂ measurements at low energies

e^{HF} v₂: Compare to Models

M. He et al. PRC 91,024904 (2015)T. Song et al. PRC 92, 014910 (2015)T. Song et al. PRC 96, 014905 (2017)

- TAMU and PHSD calculations are lower than v_2 {EP} at 54.4 GeV below 1.4 GeV/c
- Data and model calculations are comparable at $p_T>1.4$ GeV/c considering the upper limit of estimated non-flow contribution and uncertainties

Summary - Open Heavy Flavor

- Significant enhancements of D_s^+/D^0 and Λ_c^+/D^0 ratios in Au+Au w.r.t. p+p
 - Important role of coalescence in charm hadronization
- Significant R_{AA} suppression for both D^+ and D^0 in 200 GeV central Au+Au collisions; Non-zero NPE v₂ in Au+Au 54.4 GeV collisions comparable to that of 200 GeV
 - Charm quarks interact with QGP medium strongly from 54.4 to 200 GeV
- Hierarchy of $b/c \rightarrow e R_{AA}$ in Au+Au 200 GeV
 - Mass dependence of parton energy loss ($\Delta E_b < \Delta E_c$) in the QGP
- Non-zero $b \rightarrow e v_2$ (3.4 σ) in Au+Au 200 GeV

Provide additional constraints on QGP transport properties!

Why Quarkonium?

- Production in A+A
 - Dissociation in QGP
 - e.g. static and dynamic screening
 - Other effects
 - e.g. regeneration, cold nuclear matter effects, final state effects

Dissociation in QGP

- Better precision with 54.4 GeV data compared to previous measurements at STAR
- More suppression towards central collisions, with no significant energy dependence
- R_{AA} increases with increasing p_T for 39, 54.4 and 62.4 GeV

Collision Energy Dependence of J/ψ R_{AA}

NA50: PLB 477, 28 (2000)

EPJC 43, 145 (2005)

New

- 54.4 GeV data follow the trend with improved precision
- No significant energy dependence observed within uncertainties up to 200 GeV
 - Interplay of dissociation, regeneration and cold nuclear matter effects
- Model calculations are consistent with data

Theory calculations are for the same system as data points in 0-20% centrality

Why Quarkonium?

• Production in A+A

- Dissociation in QGP
 - e.g. static and dynamic screening
- Other effects
 - e.g. regeneration, cold nuclear matter effects, final state effects

Production in p+A

- Cold nuclear matter effects (CNM)
 - e.g. nuclear Parton Distribution Functions (nPDFs), nuclear absorption, coherent energy loss
- Final state effects
 - e.g. co-mover interactions

J/ψ Production in p+Au @ 200 GeV

- R_{pAu} consistent with unity at high p_T
 - Suggesting no modifications due to the CNM effects
 - Models with nPDF effects consistent with data
- Consistent with PHENIX R_{dAu}
 - Indicating similar CNM effects in p+Au and d+Au collisions

Υ Production in p+Au @ 200 GeV

- Improved precision over previous d+Au results (~50% smaller statistical uncertainty)
- Indication of more suppression than that in models with nPDF effects and energy loss in cold nuclear matter

PHENIX, PRC 87, 034904 (2013) EPS09+NLO, Ma & Vogt, Private Common nCTEQ, EPS09+NLO, Lansberg & Shao: EPJ.C77, no.1, 1 (2017) Comp. Phys. Comm. 198, 238-259 (2016) Comp. Phys. Comm. 184 , 2562-2570 (2013) Ferreriro et al., Few Body Syst. 53 (2012) 27

J/ψ Production in Jets in p+p @ 500 GeV

- No significant z dependence observed within uncertainties
 - Different trends compared to Pythia8
- Help to constrain LDMEs in NRQCD calculations
 Z. Kang et .al, PRL 119, 032001 (2017)

Summary - Quarkonium

- Au+Au J/ψ R_{AA} @ 54.4 GeV
 - Suppression of J/ψ R_{AA} observed at 54.4 GeV
 - No significant energy dependence of J/ψ $\rm R_{AA}$ suppression observed in central collisions up to 200 GeV
 - Interplay of dissociation, regeneration and cold nuclear matter effects
- p+Au J/ψ and ΥR_{pAu} @200 GeV
 - The CNM effects are negligible for high- $p_T J/\psi$ ($p_T > 4$ GeV/c), but not for low- $p_T \Upsilon$
- p+p J/ψ in jets @ 500 GeV
 - No significant z dependence of J/ψ production in jets observed for J/ψ p_T > 5 GeV/c and jet p_T > 10 GeV/c
 - Different trends compared to Pythia8

Outlook – HF at STAR 2023-2025

- Run 23+25: expect 20×10^9 MB events for Au+Au 200 GeV (10 times of Run 14+16)
- Utilize detector upgrades (iTPC, EPD, etc)

- $J/\psi v_1$ initial tilt of bulk medium
- $J/\psi v_2$ regeneration mechanism

• Complementary between RHIC and LHC

Broader momentum coverage at RHIC

Back ups

J/ψ Production in Au+Au @ 54.4 GeV

- Au + Au 54.4Ge 0.0 - 10.0 GeV/ S/B: 0.06 $\frac{S}{\sqrt{S+B}}$: 24.43 $\chi^2/ndf: \frac{67.03}{22}$ Mee (GeV/c²
- For p+p baseline at 39, 54.4, and 62.4 GeV, they are extracted from phenomenological calculations

W. Zha, et al., Phys. Rev. C 93 (2016) 024919.

Aamodt 2011 Khachatryan 2011

Acosta 2005

Adare mid 2012 Adare forward 2012

Gribushin 2000 Snyder 1976

Branson 1977

Badier 1980

6

4

- \succ Energy interpolation from the existing total J/ ψ cross section measurements
- Energy evolution of the rapidity distribution
- \blacktriangleright Energy evolution of J/ψ transverse momentum distribution

250

300

2.5

1.5

0

50

100

150

200

 $Au + Au p_{_{\rm T}} > 0 \text{ GeV/c} |y| < 1$

200 GeV 62.4 GeV 39 GeV

54.4 GeV, $p_{T} > 0.2 \text{ GeV/c}$

R_{CP} [(0-20%, 20-40%)/40-60%]

 $\langle N_{part} \rangle$ dependence of $J/\psi R_{CP}$ in Au+Au

STAR Preliminary

 Suppression observed in central Au+Au collisions at 54.4 GeV, similar to that at 62.4 and 200 GeV.

(N_{part})

350

400

- Calculated from centrality dependent bottom fraction
- Large cancelation of correlated systematic uncertainties
- Constant fit to double ratio >1, significant at 3.5σ and 4.4σ for R_{CP}(0-20%/40-80%) and R_{CP}(0-20%/20-40%)

Quarkonium Physics at STAR

Production in p+p

- Production mechanism of J/ψ still not fully understood
- Difficult for models to account for the hadronization:
 - Color Singlet Model
 - NRQCD approach(CGC+NRQCD)
 - Long distance matrix elements(LDMEs)
 - Improved Color Evaporation Model
 - •

Quarkonium Physics at STAR

Production in p+p

- Production mechanism of J/ψ still not fully understood
 - NRQCD approach (factorization formalism)

$$d\sigma[pp \to J/\psi X] = \sum_{n} d\sigma[pp \to c\bar{c}(n)X]\langle \mathcal{O}^{J/\psi}(n) \rangle$$

Production of $c\bar{c}$ (pQCD)

Evolution of $c\bar{c}$ into J/ψ (non-pQCD) long-distance matrix elements (LDMEs)

• J/ψ distrbition in jet is predicted to constrain the LDMEs

 $F(z_h, p_T)$

J/ψ polarization in p+p @ 200 GeV

 $\frac{d^2N}{d\cos\theta d\phi} \sim 1 + \lambda_{\theta} \cos^2\theta + \lambda_{\phi} \sin^2\theta \cos 2\phi + \lambda_{\theta\phi} \sin 2\theta \cos\phi$

- λ_{θ} , λ_{ϕ} and $\lambda_{\theta\phi}$ are consistent with 0 in both HX and CS frames
- NRQCD calculations with two different sets of LDMEs and CGC+NRQCD calculation are all consistent with data within uncertainties

NRQCD1: PRL 114 (2015) 092006 NRQCD2: PRL 110 (2013) 042002 CGC+NRQCD: JHEP 12 (2018) 057