

The Collins effect involves the combination of the quark transversity in the proton with the spin-dependent Collins fragmentation function, leading to azimuthal modulations of identified charged hadron yields about the jet axis. The STAR Collaboration reports a new measurement of Collins asymmetry for charged hadrons inside jets in polarized pp collisions at \sqrt{s} = 200 GeV, based on data taken during 2015. These results probe transversity for quark momentum fractions 0.1 \leq x \leq 0.4 at Q^2 scales that are one to two orders of magnitude larger than similar measurements in semi-inclusive deep-inelastic scatterings (SIDIS). They also provide a direct probe to the Collins fragmentation function and enable testing its evolution, universality and factorization breaking in the transverse momentum dependent formalism (TMD).

- tensor charge;
- direct x-dependent connection to quark orbital angular momentum;

Office of

Science

regarding factorization, universality, and evolution of TMDs.

Supported in part by the

Azimuthal transverse single-spin asymmetries of inclusive jets and identified hadrons within jets from polarized p+p collisions at \sqrt{s} = 200 GeV

Ting Lin, for the STAR Collaboration

tinglin@tamu.edu

Abstract

The STAR Collaboration

https://drupal.star.bnl.gov/STAR/presentations

Brookhaven National Laboratory

October 22-23, 2020 | Virtual RHIC/AGS Annual Users' Meeting Topical workshops: October 22 | Plenary sessions: October 23

0.04 $\stackrel{!}{\models}$ **p**[↑] + **p** \rightarrow jet + π^{\pm} + X 9.9 < jet p_ < 31.6 GeV/c + + +

Asymmetry vs. jet p_T measures the collinear transversity; vs. z, j_T maps the Collins

- K^+ , which can be produced through favored fragmentation of a valence u quark, has asymmetries that are about 1.5-sigma larger than π^+ ;
- *K*⁻, which is produced by unfavored fragmentation, has asymmetries that are consistent with zero at the current precision.
- Both observations are similar to SIDIS.

Summary

• We present the most precise measurement of Collins asymmetry for charged hadrons inside jets at 200 GeV pp collisions to date;

These results are consistent with the previous STAR results and have

• Similar x coverage as SIDIS and overlap with the $x - Q^2$ coverage of Electron Ion Collider, providing critical tests for factorization, universality

