

Highlights on flow measurements from the STAR experiment

Priyanshi Sinha *(for the STAR Collaboration)* IISER Tirupati

RHIC-AGS Annual Users' Meeting

2024 RHIC/AGS ANNUAL USERS' MEETING

A New Era of Discovery Guided by the New Long Range Plan for Nuclear Science

STAR

Beam energy and system scan at STAR

Solenoidal Tracker at RHIC (STAR)

- Enlarged rapidity acceptance
- Improved particle identification
- Enhanced event plane resolution

iTPC: https://drupal.star.bnl.gov/STAR/starnotes/. public/sn0619. eTOF: STAR and CBM eTOF group, arXiv: 1609.05102. EPD: J. Adams, et al. NIM A968, 163970 (2020)

STAR

Anisotropic flow

Directed flow (v₁): Sideward collective motion of produced particles

Elliptic flow (v_2): Initial spatial anisotropy leading to final momentum asymmetry of produced particles

Reaction plane: z-x plane

Triangular flow (v₃): Higher energy: Sensitive to initial state event-by-event fluctuations Lower energy: Result of shadowing and baryon stopping; sensitive to medium potential

$$\frac{\mathrm{dN}}{\mathrm{d\phi}} \propto \frac{1}{2\pi} \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_R)) \right]$$

$$v_n = < cos(n(\phi - \Psi_R)) >$$

→ Equation of State of the medium
→ Early stage dynamics

```
A.M. Poskanzer & S.A. Voloshin, PRC 58 (1998), 1671
STAR, PRL 118 (2017), 212301
```


Emilie Duckworth Wednesday 3:00 PM

Beam Energy Scan

Limiting fragmentation of v₁

STAR

η - y_{beam}

-1

Excess proton v₁ in BES-II

 \succ Scaling of excess proton flow with collision energy

- > Indication of scale breaking at 11.5 GeV \rightarrow change in medium and collision dynamics
- > Mean field calculations overpredict the $v_{1,excess}$ data below 14.6 GeV

Nucl. Instrum. Meth. A 968 (2020), 163970 STAR, PRL 120 (2018), 62301 Y. Nara et al., PRC 100 (2019), 054902

 $r = \frac{\text{yield of } \bar{p}}{\text{yield of } p}$

v_n of light nuclei in BES-II

- > First measurement of v_3 of light nuclei at collider energies
- Suggests coalescence to be the dominant mechanism of light nuclei production

Beam energy dependence of Δv_1 slope

- $\geq \Delta v_1$ slope is more negative at lower collision energies
 - \rightarrow Could be due to EM-field effect, longer-lived field and shorter lifetime of fireball
- Indication of strong p_T dependence of splitting

STAR, PRX 14 (2024), 011028 U. Gürsoy et al. PRC 98 (2018) ,055201; PRC 89 (2014), 054905

STAR

Beam energy dependence of flow cumulants

 \rightarrow Weakly sensitive to the viscous effects (η /s); more sensitive to the initial-state effects

STAR, PLB 839 (2023) 137755; A. Bilandzic et al. PRC 89, 064904, R.A. Lacey et al. arXiv:1311.1728, N. Magdy Universe 2023, 9(2) 107

STAR

Centrality (%)

Fixed-target (FXT) energies

11/06/2024

Priyanshi Sinha, RHIC/AGS AUM 2024

STAR Energy dependence of v₁, v₂ at FXT energies

NCQ scaling of v₂ at 3 - 4.5 GeV

Scaling becomes gradually better above 3.2 GeV

STAR, PLB 827 (2022) 137003

STAR

v_1 , v_3 at FXT energies

- \blacktriangleright Increasing collision energy \rightarrow decreasing v₁ slope; v₃ slope approach zero
- ➤ Trend consistent with HADES results at 2.4 GeV
- > Non-zero $|v_3{\Psi_1}|$, increase towards peripheral collisions
 - \rightarrow Geometry driven v₃ at lower energy
 - \rightarrow JAM describes the data implying importance of nuclear potential

Flow of light and hyper nuclei at FXT

- \succ Light- and Hyper-Nuclei production are enhanced at high $\mu_{\rm B}$ Understanding production mechanism of light/hyper nuclei Counts (x10³) > Hyper-nuclei probes Y-N interactions \rightarrow inner core of neutron stars Au+Au Collisions at RHIC **STAR Preliminary** Centrality 5-40% 0.3 Light-Nuclei d(v₁/A)/dyl_{y=0} Hyper-Nuclei 0.2 Model Data ● p: 0.4 < p_ / A < 0.8 GeV/c 0.1 Model Data ♦ d: 0.4 Hyper-Nuclei dv₁/dyl_{y=0} ● Λ: 0.4 < p_ / A < 0.8 GeV/c ■ $\Box \Lambda$ ▼t: 0.4 < p ′/ A < 0.8 ■ ³_^H: 0.33 < p₋ / A < 0.83 ■ 3.0 GeV [−]³He ³He: 0.4 < p₊ / A < 0.8 • 3.2 $A_{A}^{4}H: 0.30 < p_{-}/A < 0.75$ \blacksquare ⁴He \land ⁴He: 0.4 < p' / A < 0.8 ▲ 3.5 3.5 3.5 **v** 3.9 0.5 Collision Energy $\sqrt{s_{NN}}$ (GeV)
 - ➤ Collision energy increases → the v₁ slope of light- and hyper-nuclei decreases
 - \succ v₁ slope scales with mass number A or/and particle mass
 - JAM2 mean field + coalescence calculations explains the energy dependence

STAR

STAR

11/06/2024

v₁, v₃ of light nuclei at 3 GeV

A-scaling for v₁ and v₃ breaks above rapidity ~0.5 in 10-40% centrality
 → Coalescence production at mid-rapidity and indication of different production mechanism at forward rapidity

measurement to the

target rapidity

System size scan of collectivity

Small system flow at STAR

Zhengxi Yan : Tuesday 1:00 PM

 \succ v₃ (p+Au) ~ v₃(d+Au) ~ v₃(³He+Au)

→ IP-Glasma+MUSIC including subnucleonic fluctuations shows good agreement with $v_3(p_T)$

STAR, PRL 130 (2023) 242301

Flow in O+O collisions

Zhengxi Yan : Tues 1 PM

> v₂ (O+O) < v₂(d+Au) ≈ v₂(³He+Au)
 > v₃ (O+O) ≈ v₃(d+Au) ≈ v₃(³He+Au)
 > Cluon fluctuation around quark model

Gluon fluctuation around quark model: $\epsilon_n(d+Au) \approx \epsilon_n(^{3}He+Au); n=2,3$

Gluon field: PRC 94 (2016), 024919

 $\varepsilon_2(O+O) < \varepsilon_2(^{3}He+Au)$

 $\varepsilon_3(O+O) \approx \varepsilon_3(^{3}He+Au)$

 \rightarrow v_n/ ε_n similar between O+O and

³He+Au, within a quark Glauber model

arXiv:2312.12167 [nucl-ex] Phys. Rev. Lett. 111 (2013) 032501 Phys. Rev. Lett. 119 (2017) 222505

Strange hadrons' flow

- \succ v₂ of K_s⁰, Λ, and $\overline{\Lambda}$ in isobar collisions (Ru+Ru and Zr+Zr) is smaller than in ¹⁹⁷Au+¹⁹⁷Au and ²³⁸U+²³⁸U collisions at p_T > 1.5 GeV/c
- \succ v₂ in Ru+Ru and Zr+Zr collisions is larger as compared to ⁶³Cu+⁶³Cu collisions at higher p_T

²³⁸₉₂U, ¹⁹⁷₇₉Au, ⁹⁶₄₄Ru, ⁹⁶₄₀Zr, ⁶³₂₉Cu

STAR, PRC 77 (2008) 054901; PRC 81 (2010) 044902; PRC 103 (2021) 064907

Imaging Shapes of Atomic Nuclei

Snapshot of the spatial matter distribution
hydrodynamics

imprints on the particle momentum distribution

C. Zhang and J. Jia, PRL 131 (2022), 022301

STAR, arXiv:2401.06625 [nucl-ex] B Schenke, PRC 102 (2020), 034905 J. Jia, PRC 105 (2022), 014905 G. Giacalone et al, PRL 127 (2021), 242301 P. Sinha et al, Phys. Rev. C 108 (2023) 024911

STAR

- \succ Enhanced v₂ particularly in central U+U collisions
 - \rightarrow Nuclear deformation influences collisions over a wide centrality range
- Mean v₂ ratios and v₂-p_T correlations are used to constrain initial conditions and nuclear structure in U+U and isobar collisions

Summary

- ✓ More negative ∆v₁ slope at lower energies : Qualitatively consistent with influence of EM-field and shorter lifetime of fireball
- Explored particle production in the fragmentation region and of light/hyper nuclei at wide range of rapidity
 a probe for medium dynamics
- ✓ Anti-flow of mesons observation showing hints of nuclear shadowing effect
- ✓ Hadronic interaction _______ from 3.2 GeV towards 4.5 GeV ______ Partonic collectivity
- ✓ JAM calculations suggest potential is essential for development of geometry driven v_3 { Ψ_1 } at lower energies, whereas JAM overpredicts the excess v_1 below 14.6 GeV → Better constraint on EoS
- ✓ Significance of sub-nucleonic fluctuations in small systems
- \checkmark Exploring anisotropic flow as a new means to imaging of nuclear structure

Outlook

□ Stay tuned for more exciting results covering the entire BES-II collider and FXT energies

- γ+Au@2023, d+Au@2021 and O+O@2021 will provide more information for collectivity in small systems
- □ Forward detectors enables the flow measurements in wider rapidity ranges, opening new windows to explore the QGP properties
- This precision era takes us closer to uncover the secrets of QGP phase, its transitions and much more...

Thank you for your attention!