Highlights on flow measurements from the STAR experiment

Priyanshi Sinha (for the STAR Collaboration)
IISER Tirupati

RHIC-AGS Annual Users’ Meeting
Beam energy and system scan at STAR

1) BES-II collider energies
\[\sqrt{s_{NN}} = 7.7 - 54.4 \text{ GeV} \]

2) FXT energies
\[\sqrt{s_{NN}} = 3.0 - 13.7 \text{ GeV} \]

- Onset of deconfinement
- Nature of the phase transition
- Critical Point
- Study of QGP properties

3) System scan at RHIC top energy
\[\sqrt{s_{NN}} = 200 \text{ GeV} \]

K Meehan, Nuclear Physics A. 967 (2017) 10.1016
Solenoidal Tracker at RHIC (STAR)

- Enlarged rapidity acceptance
- Improved particle identification
- Enhanced event plane resolution

Anisotropic flow

Directed flow (v_1): Sideward collective motion of produced particles

Elliptic flow (v_2): Initial spatial anisotropy leading to final momentum asymmetry of produced particles

Triangular flow (v_3): Higher energy: Sensitive to initial state event-by-event fluctuations
Lower energy: Result of shadowing and baryon stopping; sensitive to medium potential

$$\frac{dN}{d\phi} \propto \frac{1}{2\pi} \left[1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_R)) \right]$$

$$v_n = \langle \cos(n(\phi - \Psi_R)) \rangle$$

→ Equation of State of the medium
→ Early stage dynamics

A.M. Poskanzer & S.A. Voloshin, PRC 58 (1998), 1671
STAR, PRL 118 (2017), 212301

STAR, PRC 109 (2024), 044914

Science 337 (2012), 310

Priyanshi Sinha, RHIC/AGS AUM 2024
Beam Energy Scan

Emilie Duckworth
Wednesday 3:00 PM
Limiting fragmentation of v_1

- Measurement of flow over nine units of pseudorapidity (η)
- Precision measurement of v_1 enables observation of limiting fragmentation
- The phenomenon extends for various centralities at BES-II energies

PHOBOS. PRL 91 (2003), 052303
PHOBOS. PRL 97 (2006), 012301
Excess proton v_1 in BES-II

- Precision measurement of \bar{p} and p from 7.7 to 200 GeV

- Scaling of excess proton flow with collision energy
- Indication of scale breaking at 11.5 GeV → change in medium and collision dynamics
- Mean field calculations overpredict the $v_{1,\text{excess}}$ data below 14.6 GeV

$\rho = \frac{\text{yield of } \bar{p}}{\text{yield of } p}$

$\rho = \frac{\text{yield of } \bar{p}}{\text{yield of } p}$

$\rho = \frac{\text{yield of } \bar{p}}{\text{yield of } p}$

$\rho = \frac{\text{yield of } \bar{p}}{\text{yield of } p}$

$\rho = \frac{\text{yield of } \bar{p}}{\text{yield of } p}$

$\rho = \frac{\text{yield of } \bar{p}}{\text{yield of } p}$

$\rho = \frac{\text{yield of } \bar{p}}{\text{yield of } p}$

- Mean field calculations overpredict the $v_{1,\text{excess}}$ data below 14.6 GeV

References:
- STAR, PRL 120 (2018), 62301
- Y. Nara et al., PRC 100 (2019), 054902
v_n of light nuclei in BES-II

- First measurement of v_3 of light nuclei at collider energies
- Suggests coalescence to be the dominant mechanism of light nuclei production

PRC 72 (2005), 064901
PRC 93 (2016), 014907
PRC 88 (2013), 014902
PLB 827 (2022), 137003
Beam energy dependence of Δv_1 slope

- Δv_1 slope is more negative at lower collision energies
 - Could be due to EM-field effect, longer-lived field and shorter lifetime of fireball
 - Indication of strong p_T dependence of splitting

STAR, PRX 14 (2024), 011028
U. Gürsöy et al. PRC 98 (2018), 055201; PRC 89 (2014), 054905
Beam energy dependence of flow cumulants

- Anti-correlation between \(\nu_2 \) and \(\nu_3 \)
 - Anti-correlation b/w \(\epsilon_2 \) and \(\epsilon_3 \)
- Mode coupling between \(\nu_2 \) and \(\nu_4 \)

- Weak dependence on beam energy
 - Weakly sensitive to the viscous effects (\(\eta/s \)) ; more sensitive to the initial-state effects

\[
V_4 = \nu_4 e^{i\psi_4} = \kappa_4 \epsilon_4 e^{4i\Phi_4} + \kappa_4' \epsilon_2 e^{4i\Phi_2} = V_4^{\text{Linear}} + \chi_{4.22} V_4^{\text{MC}},
\]

STAR Preliminary

Fixed–target (FXT) energies
Energy dependence of v_1, v_2 at FXT energies

- Anti-flow only of kaon at low p_T at 3.83 GeV
- Anti-flow observed at $3 - 3.9$ GeV for $\pi^+ K^\pm$ and K_s^0, at low p_T
 - Shadowing effect from spectators
- Out-of-plane \rightarrow In-plane expansion b/w 3 - 4.5 GeV

STAR Preliminary

E895, PRL 85 (2000), 940

Priyanshi Sinha, RHIC/AGS AUM 2024
NCQ scaling of v_2 at 3 - 4.5 GeV

- NCQ scaling completely breaks below 3.2 GeV
- Scaling becomes gradually better above 3.2 GeV

STAR, PLB 827 (2022) 137003
\(v_1, v_3 \) at FXT energies

- Increasing collision energy \(\rightarrow \) decreasing \(v_1 \) slope; \(v_3 \) slope approach zero
- Trend consistent with HADES results at 2.4 GeV
- Non-zero \(|v_3\{\Psi_1\}| \), increase towards peripheral collisions
 - Geometry driven \(v_3 \) at lower energy
 - JAM describes the data implying importance of nuclear potential

\[\frac{d\nu}{dy} \]

\[\frac{d(v_3/A)}{dy} \]

\[\text{Au+Au Collisions at RHIC, 10 - 40 \%} \]

\[\text{STAR preliminary} \]

\[\text{PRL 120 (2018), 062301; PLB 827 (2022), 137003} \]

\[\text{HADES, PRL 125 (2020), 262301; STAR, PRC 109 (2024) 44914} \]
Flow of light and hyper nuclei at FXT

- Light- and Hyper-Nuclei production are enhanced at high μ_B
- Understanding production mechanism of light/hyper nuclei
- Hyper-nuclei probes Y-N interactions \rightarrow inner core of neutron stars

- Collision energy increases \rightarrow the v_1 slope of light- and hyper-nuclei decreases
- v_1 slope scales with mass number A or/and particle mass
- JAM2 mean field + coalescence calculations explains the energy dependence

STAR, PRL 130 (2023), 211301
Y. Nara et al., PRC 106 (2022), 044902
v_1, v_3 of light nuclei at 3 GeV

- A-scaling for v_1 and v_3 breaks above rapidity ~ 0.5 in 10-40% centrality
 - Coalescence production at mid-rapidity and indication of different production mechanism at forward rapidity
- To explore the measurement to the target rapidity
System size scan of collectivity

U+U Au+Au Ru+Ru O+O $^3\text{He}+\text{Au}$ d+Au p+Au $\gamma+\text{Au}$

$\text{A}+\text{A}$ $\text{p}/d/\text{He}+\text{A}$ Photonuclear $\gamma+\text{Au}$
Small system flow at STAR

- $v_2(p_T)$ values depend on the colliding systems
- $v_3(\text{p+Au}) \sim v_3(\text{d+Au}) \sim v_3(\text{3He+Au})$

 → IP-Glasma+MUSIC including subnucleonic fluctuations shows good agreement with $v_3(p_T)$
Flow in O+O collisions

- v_2 (O+O) $< v_2$(d+Au) $\approx v_2$(³He+Au)
- v_3 (O+O) $\approx v_3$(d+Au) $\approx v_3$(³He+Au)
- Gluon fluctuation around quark model:

 $$\varepsilon_n$(d+Au) $\approx \varepsilon_n$(³He+Au); n=2,3

Gluon field: PRC 94 (2016), 024919

- ε_2(O+O) $< \varepsilon_2$(³He+Au)
- ε_3(O+O) $\approx \varepsilon_3$(³He+Au)

\Rightarrow v_n/ε_n similar between O+O and ³He+Au, within a quark Glauber model

arXiv:2312.12167 [nucl-ex]

STAR, PRL 130 (2023) 242301

Zhengxi Yan : Tues 1 PM
Strange hadrons' flow

- v_2 of K_s^0, Λ, and $\bar{\Lambda}$ in isobar collisions (Ru+Ru and Zr+Zr) is smaller than in $^{197}\text{Au}+^{197}\text{Au}$ and $^{238}\text{U}+^{238}\text{U}$ collisions at $p_T > 1.5$ GeV/c

- v_2 in Ru+Ru and Zr+Zr collisions is larger as compared to $^{63}\text{Cu}+^{63}\text{Cu}$ collisions at higher p_T

11/06/2024

Priyanshi Sinha, RHIC/AGS AUM 2024
Imaging Shapes of Atomic Nuclei

- Snapshot of the spatial matter distribution imprints on the particle momentum distribution

- Enhanced v_2 particularly in central U+U collisions
 - Nuclear deformation influences collisions over a wide centrality range

- Mean v_2 ratios and v_2-p_T correlations are used to constrain initial conditions and nuclear structure in U+U and isobar collisions

$\beta_2^U = 0.286 \pm 0.025$

$\beta_2^{Ru} = 0.16 \pm 0.02$, $\beta_3^{Zr} = 0.20 \pm 0.02$

C. Zhang and J. Jia, PRL 131 (2022), 022301

STAR, arXiv:2401.06625 [nucl-ex]
B Schenke, PRC 102 (2020), 034905
J. Jia, PRC 105 (2022), 014905
G. Giacalone et al, PRL 127 (2021), 242301
Summary

✓ More negative Δv_1 slope at lower energies: Qualitatively consistent with influence of EM-field and shorter lifetime of fireball

✓ Explored particle production in the fragmentation region and of light/hyper nuclei at wide range of rapidity
 ➔ a probe for medium dynamics

✓ Anti-flow of mesons observation showing hints of nuclear shadowing effect

✓ Hadronic interaction from 3.2 GeV towards 4.5 GeV → Partonic collectivity

✓ JAM calculations suggest potential is essential for development of geometry driven $v_3\{\Psi_1\}$ at lower energies, whereas JAM overpredicts the excess v_1 below 14.6 GeV → Better constraint on EoS

✓ Significance of sub-nucleonic fluctuations in small systems

✓ Exploring anisotropic flow as a new means to imaging of nuclear structure
Stay tuned for more exciting results covering the entire BES-II collider and FXT energies

γ+Au@2023, d+Au@2021 and O+O@2021 will provide more information for collectivity in small systems

Forward detectors enables the flow measurements in wider rapidity ranges, opening new windows to explore the QGP properties

This precision era takes us closer to uncover the secrets of QGP phase, its transitions and much more…

Thank you for your attention!