Longitudinal double-spin asymmetries of inclusive jet and di-jet production at STAR

Maria Żurek (LBNL) for the STAR collaboration January 25, 2021

The Solenoidal Tracker at the Relativistic Heavy Ion Collider (STAR) experiment probes the gluon helicity distribution $\Delta g(x,Q^2)$ using collisions of longitudinally polarized protons at $\sqrt{s}=200$ GeV and $\sqrt{s}=510$ GeV. $\Delta g(x,Q^2)$ can be accessed through the double spin asymmetries A_{LL} in gluon-dominated hard scattering processes via inclusive jet and di-jet production.

Previously published results on inclusive jet production at $\sqrt{s} = 200 \text{ GeV}$ and mid-pseudorapidity $|\eta_{\text{jet}}| < 1$ are based on data corresponding to an integrated luminosity $L = 20 \text{ pb}^{-1}$ with an average beam polarization P = 57%. When included in perturbative QCD analysis of global data, they provide evidence for positive gluon polarization for the momentum fraction x > 0.05 at a hard perturbative scale $Q^2 = 10 \text{ GeV}^2$. This talk will cover the inclusive jet and di-jet A_{LL} measurements based on the most recent data with an approximately twice larger figure of merit, LP^4 , and with improved systematic uncertainties, compared to the published results. The status of the jet A_{LL} measurements at $\sqrt{s} = 510 \text{ GeV}$, which will constrain $\Delta g(x, Q^2)$ at lower x, will be also discussed.