Search for the Chiral Magnetic Effect with Isobar Collisions at STAR

Yu Hu (for the STAR Collaboration) Fudan University, Brookhaven National Laboratory

Abstract

The chiral magnetic effect (CME) is predicted to occur as a con-2 sequence of a local violation of P and CP symmetries of the strong 3 interaction amidst a strong magnetic field generated in relativistic 4 heavy-ion collisions. Experimental manifestation of the CME involves 5 a separation of positively and negatively charged hadrons along the 6 direction of the magnetic field. Previous measurements of the CME-7 sensitive charge-separation observables remain inconclusive because 8 of large background contributions. In order to better control the in-9 fluence of signal and backgrounds, the STAR Collaboration has per-10 formed a blind analysis of a large data sample of approximately 3.8 11 billion isobar $\binom{96}{44}$ Ru + $\binom{96}{44}$ Ru and $\binom{96}{40}$ Zr + $\binom{96}{40}$ Zr) collisions at the top RHIC 12 energy. Prior to the blind analysis, the CME signatures were pre-13 defined as a significant excess of the CME-sensitive observables in 14 Ru+Ru collisions over those in Zr+Zr collisions, owing to a larger 15 magnetic field in the former. This presentation reports on the find-16 ings from the isobar blind analysis [1]. 17

18 References

1

¹⁹ [1] J. Adam, et al. STAR Collaboration, Search for the Chiral Magnetic

- Effect with Isobar Collisions at $\sqrt{s_{NN}} = 200$ GeV by the STAR Collab-
- oration at RHIC, (2021), arXiv:2109.00131[nucl-ex].