Recent highlights on collective properties of the nuclear matter from the STAR experiment at RHIC

Vipul Bairathi (for the STAR collaboration)

Instituto de Alta Investigación, Universidad de Tarapacá, Chile

Abstract

The study of flow harmonics provides valuable insights into the dynamics and properties of the Quark-Gluon Plasma (QGP) medium produced in heavy-ion collisions. The directed flow (v_1) slope (dv_1/dy) of protons at mid-rapidity is expected to be sensitive to the first-order phase transition. The number of constituent quark (NCQ) scaling of elliptic flow (v_2) can be regarded as a signature of the formation of QGP. Triangular flow (v_3) typically originates from fluctuations and is expected to provide constraints on the initial state geometry and fluctuations.

In this talk, we focus on the results of collective flow from Au+Au collisions at the top RHIC energy ($\sqrt{s_{NN}} = 200$ GeV), the Beam Energy Scan (BES) program ($\sqrt{s_{NN}} = 3.0$ to 27 GeV). Additionally, we will present results from the data collected for the deformed nuclei, such as Isobars (Ru+Ru and Zr+Zr) and U+U collisions. The transverse momentum (p_T), rapidity (y), and centrality dependence of v_1 and v_2 will be presented. Furthermore, the beam energy dependence of the v_1 and v_3 slopes and the p_T -integrated v_2 will be examined. The experimental results will be compared with model calculations to better understand the underlying physics mechanisms in heavy-ion collisions.