Strange hadron production in d+Au collisions at $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$ using the STAR detector

Ishu Aggarwal (for the STAR collaboration) Panjab University, Chandigarh, India

Strangeness production has been suggested as a sensitive probe to the dynamics of the deconfined 1 matter created in heavy-ion collisions. Ratios of particle yields involving strange particles are often 2 utilized to study properties of the nuclear matter at freeze-out, such as the strangeness chemical 3 potential and the chemical freeze-out temperature. The d+Au collisions bridge the multiplicity gap 4 between p+p and Au+Au collisions and can provide insight to the role of event multiplicity in strange 5 hadron production. The study of strange hadrons in d+Au collisions can also help to understand 6 their cold nuclear matter effects, a necessary ingredient for interpreting similar measurements in 7 heavy-ion collisions. 8 In this poster, we will present new measurements on the production of strange hadrons (K_S^0) . g

¹⁰ A) for different rapidity intervals in d+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV, recorded by the STAR ¹¹ experiment in 2016. We will report transverse momentum $(p_{\rm T})$ spectra, $p_{\rm T}$ integrated yield dN/dy, ¹² average transverse momentum, yield ratios, nuclear modification factors, and rapidity asymmetry ¹³ $(Y_{\rm Asym})$ for these strange hadrons. The physics implications of these measurements on the collision

14 dynamics will be discussed.