Study the production of identified charged hadrons in Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV using the STAR detector

Arushi Dhamija (for the STAR Collaboration)

4

5

Panjab University, Chandigarh, India

Exploring the QCD phase diagram and searching for the QCD critical 6 point are some of the main goals of the Beam Energy Scan program at RHIC. 7 In 2017, the STAR experiment collected large dataset of Au+Au collisions 8 at $\sqrt{s_{NN}} = 54.4$ GeV. The identified particle spectra and yields provide 9 information about the bulk properties of the hot medium created in these 10 collisions. The centrality dependence of the freeze-out parameters explores a 11 wide (T, μ_B) region in the phase diagram facilitating the search for the QCD 12 critical point. 13

¹⁴ We present the measurements of the production of π^{\pm} , K^{\pm} , p, and \bar{p} at ¹⁵ midrapidity $|y| \leq 0.1$. The results for the transverse momentum spectra, par-¹⁶ ticle yields dN/dy, average transverse momentum $\langle p_T \rangle$, and particle ratios ¹⁷ will be presented for different centrality classes and compared with AMPT ¹⁸ and HIJING model calculations. In addition, the extracted freeze-out pa-¹⁹ rameters will be compared with the results at other collision energies. The ²⁰ physics implications of the results will be discussed.