Initial electromagnetic field dependence of photon-induced production in isobaric collisions at STAR

Kaifeng Shen (for the STAR Collaboration) University of Science and Technology of China

Abstract

The Lorentz-boosted electromagnetic field, arising from colliding nuclei, can be treated as a flux of quasi-real photons. Consequent photonuclear ($\propto Z^2$) and photon-photon ($\propto Z^4$) processes could reasonably explain the observed enhancements of J/ψ and e^+e^- pair production at very low transverse momenta (p_T) in peripheral heavy-ion collisions. The STAR experiment collected datasets of $^{96}_{44}\mathrm{Ru} + ^{96}_{44}\mathrm{Ru}$ and $^{96}_{40}\mathrm{Zr} + ^{96}_{40}\mathrm{Zr}$ collisions at $\sqrt{s_{_{\mathrm{NN}}}} = 200$ GeV in 2018, which provide a unique opportunity to study the field strength dependence of photon-induced processes.

In this presentation, we will present measurements of J/ψ and e^+e^- pair production at very low p_T in peripheral and ultra-peripheral isobaric collisions, and study the electromagnetic field dependence of photon-induced production by comparing measurements between isobaric and Au+Au collisions. Physics implications of these results will be discussed together with model comparisons.

10

11

12