
Evolution of the STAR

Framework OO Model for Multi-

Core Era

V.Fine, J.Lauret,V.Perevoztchikov

for the STAR collaboration

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

2

The Solenoidal Tracker At RHIC (STAR) is a large acceptance collider

detector which started data taking at Brookhaven National Laboratory

in summer 2000.

At the time STAR developed a modular ROOT package-based

Object-Oriented framework for simulation, reconstruction and analysis

in offline production, interactive physics analysis, and online

monitoring.

With the era of multi-core CPUs, software parallelism is becoming both

affordable as well as a practical need.

Especially interesting is to re-evaluate the adaptability of the high

energy and nuclear physics sophisticated, but time-consuming, event

reconstruction applications to the reality of the multi-threaded

environment.

History

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

3

Is it acceptable?

• Discussions within STAR collaboration indicated

that any appealing solution means no changes

of codes should be needed by STAR scientist /

changes are not acceptable

• The usage of the parallel architectures is

needed and, if it can be done transparently for

the existing end-user codes, would bring

immediate benefits to experimental frameworks

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

4

STAR framework is designed to support the chronologically

chained components, which can themselves be composite

sub-chains, with components (“makers”) managing named

“datasets” they have created and are responsible for.

Makers and data sets inherit from the TDataSet class which

supports their organization into hierarchical structures for

management.

TDataSet also centralizes almost all system tasks:

• data set navigation,

• I/O, database access,

• inter-component communication.

STAR framework OO model

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

5

OO model of the STAR simulation /

reconstruction chain (ancient version)

TDataSet

TDataSetIterTDataSetIter

“base” container

class
TObjectSet

TTable

TTableSorterTTableSorter

TFileSet

TVolume/

TVolumeView

StMaker

Data definition

“abstract” TObject

“file system”

description

GEANT Geometry

structure

Flow control

TDataSet object ::= the "named" collection of TDataSet objects

The C++ classes with the prefix “T” are available from

the “table” ROOT package

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

6

STAR Framework Features
The main features of the STAR framework design:

• its “makers” and “data sets” share the common

object model

• they are derived from one and the same base

TDataSet class

• the entire STAR reconstruction chain is a single

instance of the StChain class (subclass of

TDataSet)

• This includes both “maker” objects as well as

“data sets”.

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

7

STAR “Maker” communication

within the reconstruction chain

“Data sets”

Each maker can query the data published by the other makers.

Query:

Publish:

Top “maker”

Child “makers”

AddData()

GetDataSet()

At its basic principle, modules do not communicate with each other directly and

act as consumers and providers of data structures. They use the framework

via the “query” represented by method StMaker::GetDataSet / “publish”

represented by method StMaker::AddData() API to query the presence of the

input data and publish the output results the modules produce.

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

8

3 “transparent” steps towards

multi-core era
By

• Complementing the TDataSet-base framework
with the ability to start several modules in
parallel

• synchronizing the global data access between
the "consumer" modules and "producer“

one can “transparently” enhance the existent
packages to leverage the multi-core hardware

capabilities.

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

9

Evolution: main directions

We are concentrating our effort to implement

and test the crucial components such as

“transparent”

–parallelization,

–synchronization,

– registration

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

10

Evolution: main directions

Each maker can query the data published by the other makers.

Query:

Publish:

Top “maker”

Child “makers”

AddData()

GetDataSet()

GetDataSet() and AddData() are “base” methods. Normally, within

STAR framework, no end-user subclass is to re-implement it.

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

11

Evolution: main directions

Each maker can query the data published by the other makers.

Query:

Publish:

Top “maker”

Child “makers”

AddData()

GetDataSet()

Change the hierarchical level does not change the ability to query the

data and doesn’t require to change any low-level implementations either.

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

12

“Transparent” parallelization and

synchronization

It is done by

• Re-implementing the base class methods used to handle main
initialization, executing, end and garbage collection
– like Init(), Make(), Finish() and Clear() in STAR’s StMaker

to allow generating or using as many threads as many “makers” are
present on the next level of hierarchy instance of the StChain class
instead of the calling the methods in loop

• It is enough to add the extra thread related private data-members to
the base class. One needs of a data-member for the thread ID and
make methods “atomic”.

“Transparency” can be achieved without change of the class public
interface

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

13

“Transparent” registration

• BUT, we realize that the
"query"/"publish" paradigm is not
sufficient to run the multi-threaded
application effectively.

• It should be complemented with an API
to “register” the module output to notify
the framework members about an output
dataset “to be produced soon”.

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

14

“registration” use case

1 2

Single

thread
Naïve

2 threads

time

1 2

“2” publishes the

“wrong” result

1 2

“1” publishes the

“useless” result

Wrong way !

1 2

“1” registers

the future data

1 2

“2” is waiting

the data

1 2

“1” publishes

the data

1 2

“2” publishes

the data

Correct !

The “2” receiving

module thread can be

automatically

suspended if the data it

has requested is not

ready yet.

time

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

15

Practical step: “Event Display”

StSteeringModule

StDataReadModule

StDetectorGeomModule

StDisplayModule

DAQ

files

Event Pool Multi-threaded version

allowed the STAR shift

crew investigate the

detector parameters

interactively without data

taking interruption.

Nov 4, 2008 ACAT2008 .Evolution of the STAR

Framework OO Model for Multi-

Core Era

16

Status
• The analysis showed that the existing design of STAR single-threaded

framework can evolve transparently to meet the Multi-Core Era requirement
with no revolution.
– It is clear one should anticipate many problems ahead. We are concentrating

our effort to implement and test the crucial components such as “transparent”
parallelization, synchronization, registration.

• Our approach relying on TDataSets could be made general for ROOT users
– Changes will be added to ROOT SVN

– (one only need to use it ☺)

• The first version of the “parallel” chain was used to enhance the STAR
Online Event Display.
– It has been deployed during the Run8 and proved the approach can be

implemented on the large scale with the reasonable amount of manpower.

– The enhanced version of our beta-application example will be used during Run9

– STAR will then be ready to expand its production or analysis framework
and move ahead in the multi-core era
• Benefits need to re-evaluated

