Measurements of hyperon polarization in heavy-ion collisions at $\sqrt{s_{\text{NN}}} = 3 - 200 \text{ GeV}$ with the STAR detector

Joseph R. Adams,¹ Xingrui Gou,² Kosuke Okubo,³ and T. Niida³

(for the STAR collaboration)

¹Ohio State University, Columbus, Ohio 43210 ²Shandong University, Qingdao, Shandong 266237 ³University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan (Dated: February 5, 2022)

In heavy-ion collisions, the observation of the global hyperon polarization, $\overline{P}_{\rm H}$, ranging from $\sqrt{s_{\rm NN}} = 7.7$ GeV to 5.02 TeV has revealed the existence of large vorticities perpendicular to the reaction plane due to system's orbital angular momentum. We present recent results on $\overline{P}_{\rm H}$, and differential measurements thereof, extended to the low energies of 3 and 7.2 GeV [1]. A notable advantage of the STAR acceptance at low $\sqrt{s_{\rm NN}}$ is the ability to measure the dependence of $\overline{P}_{\rm H}$ on y across the full range of hyperon production in y which can test the predictions of numerous model calculations. Further studies of differential measurements of $\overline{P}_{\rm H}$ are presented as well using Au+Au collisions at $\sqrt{s_{\rm NN}} = 19.6$ and 27 GeV which allow for comparisons to the low- $\sqrt{s_{\rm NN}}$ measurements presented here and to the high-energy measurements studied in Ref. [2]. Studies of the vortical flow structure's dependence on system size are also possible using Ru+Ru and Zr+Zr collisions at $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$ which are presented here as well. Furthermore, while $\overline{P}_{\rm H}$ reveals information about the vorticity driven by angular momentum, a recent study [3] measuring local polarization along the beam direction, \overline{P}_{Z} , revealed vorticity in the QGP arising from collective flow. The measurement stands in disagreement with a number of model calculations and, to shed light on the matter, measurements of \overline{P}_{Z} can be conducted in smaller systems than Au+Au or relative to higherorder event-plane angles. These measurements of $\overline{P}_{\rm Z}$ in Ru+Ru and Zr+Zr at $\sqrt{s_{\rm NN}} = 200 {\rm ~GeV}$ presented here will provide valuable insight into the mechanisms of flow-driven vorticity.

- [1] M. S. Abdallah et al. Global A-hyperon polarization in Au+Au collisions at $\sqrt{s_{NN}}=3$ GeV. *Phys. Rev. C*, 104(6):L061901, 2021.
- [2] J. Adam et al. Global polarization of Λ hyperons in

Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. Phys. Rev. C, 98:014910, 2018.

[3] J. Adam et al. Polarization of Λ ($\overline{\Lambda}$) hyperons along the beam direction in Au+Au collisions at $\sqrt{s_{_{NN}}} = 200$ GeV. *Phys. Rev. Lett.*, 123(13):132301, 2019.