

Measurements of hyperon polarization in heavy-ion collisions at $\sqrt{s_{\rm NN}} = 3 - 200$ GeV with the STAR detector

Joseph R. Adams, on behalf of the STAR collaboration Quark Matter 2022 — Kraków, Poland 7 April 2022

Supported in part by:

Global hadron polarization

- Non-central nuclear collisions carry large angular momentum, $\overline{J} = \overline{r} \times \overline{p}$
- Hadron spin alignment, \overline{P}_{H} , with \overline{J} via parton scattering (spin-orbit coupling)
- In hydro, fluid cells are considered and thermal vorticity is calculated

•
$$\varpi_{\mu\nu} = -\frac{1}{2} \left(\partial_{\mu} \beta_{\nu} - \partial_{\nu} \beta_{\mu} \right), \quad \beta = \frac{u(x)}{T}$$

- ω is transferred to hadron spin under the assumption of local thermodynamic equilibrium
 - Cooper-Frye formula

Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. 94, 102301 (2005), Erratum:ibid. 96, 039901 (2006).

Becattini F, Csernai L, Wang DJ. Phys. Rev. C 88 034905 (2013), Erratum: Phys. Rev.C 93 6 069901(2016)

Initial measurements

- Measurements by STAR and ALICE showed significant $\overline{P}_{\Lambda/\overline{\Lambda}}$, decreasing with $\sqrt{s_{\rm NN}}$
- The trend is reproduced by numerous model *pre*dictions
 - Viscous hydro: I. Karpenko, F. Becattini, Eur. Phys. J. C77:213 (2017)
 - Partonic transport: H. Li, *et. al.* Phys. Rev. C96:054908 (2017)
 - Hadronic transport: O. Vitiuk, *et. al.* Phys. Lett. B 803 135298 (2020)
 - Chiral-kinetic transport: Sun Y, Ko CM. Phys. Rev. C96:024906 (2017)
 - New confirmation of equilibrium hydrodynamics!
 - Previously limited to $\sqrt{s_{\rm NN}}$ > 7.7 GeV

Recent model studies

- Recent low-energy model studies don't agree on the energy of $\overline{P}_{H, \text{ max}}$ or its magnitude below $\sqrt{s_{NN}} \approx 10 \text{ GeV}$
 - UrQMD: Y. Guo, et. al. Phys. Rev. C 104 4 L041902 (2021) arXiv:2105.13481
 - AMPT: X.G. Deng, et. al., Phys. Rev. C 101, 064908 (2020), arXiv:2001.01371
 - 3-Fluid: Y.B. Ivanov, Phys. Rev. C 103, L031903 (2021) arXiv:2012.07597
- \overline{P}_{H} measurements at low $\sqrt{s_{NN}}$ will provide constraints on the set of assumptions valid at low collision energy

Fixed-target collisions in STAR

- A gold target was installed within the beam pipe allowing fixed-target collisions at energies extending below 7.7 GeV
- High-statistics data sets at $\sqrt{s_{\rm NN}} = 3$, 7.2 GeV

Fixed-target results

- At $\sqrt{s_{\rm NN}} = 7.2$ GeV we measure $\overline{P}_{\rm H}$ consistent with 3FD
 - Rapidity range is not consistent
- At $\sqrt{s_{\rm NN}} = 3$ GeV we see the trend of increasing $\overline{P}_{\rm H}$ persist
 - The hadron gas supports enormous ω at low $\sqrt{s_{\rm NN}}$
 - The magnitude is consistent with 3-Fluid Dynamics (3FD)
 - System evolves hydrodynamically
- More model studies needed

$p_{\rm T}$ and centrality dependence

- P_H increases with centrality
 - Consistent with angular-momentumdriven phenomenon
- No observed dependence on p_T
- Both measurements qualitatively agree with previous studies

2.5

2

 $p_{\rm T}$ (GeV/c)

7.2 GeV

50

0.52<y+ly_beam

★ 1.02<y+ly l<1.52

_★__ 1.52<y+ly___l<2.02

1.5

centrality (%)

 $\alpha_{\Lambda} = 0.732$

0.5

y dependence

- Numerous models predict strong dependence on y
- Previous studies found no dependence, but did not have access to forward rapidity
- These low-energy data sets give us the unique opportunity to study $\overline{P}_{\rm H}$ to the limits of Λ production in y

y dependence

- Within uncertainties no such dependence is observed
 - Uncertainties grow at forward rapidity and a dependence can't be ruled out
 - Future STAR measurements will help provide insight

Magnetic-field observable

- Vorticity gives positive contribution to P_{Λ} and $P_{\overline{\Lambda}}$
- $|\overline{B}|$ enhances $P_{\overline{\Lambda}}$ and suppresses P_{Λ}
 - $(\overline{\mu}_{B,\Lambda} = \overline{\mu}_{B,\overline{\Lambda}})$
- We measure $|\overline{B}|$ via splitting between P_{Λ} and $P_{\overline{\Lambda}}$
 - Late-stage magnetic field sustained by the QGP
- Suggested splitting in BES
 - ~2 sigma effect

11

Magnetic-field observable: previous measurements

- Studies at $\sqrt{s_{\rm NN}}=54.4,\,200~{\rm GeV}$ show no splitting
- High-statistics data sets taken by STAR at $\sqrt{s_{\rm NN}} = 19.6, 27$ GeV will allow for a statistically significant study of any such splitting suggested in previous measurements

- The average polarizations and differential measurements are consistent with previous observations
- A factor of 10 reduction in uncertainties

- The average polarizations and differential measurements are consistent with previous observations
- A factor of 10 reduction in uncertainties

- The average polarizations and differential measurements are consistent with previous observations
- A factor of 10 reduction in uncertainties

- The average polarizations and differential measurements are consistent with previous observations
- A factor of 10 reduction in uncertainties

- The average polarizations and differential measurements are consistent with previous observations
- A factor of 10 reduction in uncertainties

Magnetic-field observable

- Evidence for a magnetic field may also be found in a difference between \overline{P}_Λ and $\overline{P}_{\overline{\Lambda}}$ in Ru+Ru and Zr+Zr isobar data
 - Same system size
- STAR collected high-statistics data sets using these species at 200 GeV
- No significant difference is observed

System-size dependence of \overline{P}_{H}

- Isobar data also allows us to study system size dependence
 - Model calculations suggest a decrease in \overline{P}_{H} as system size becomes larger
- Integrated result shows no enhancement over previous measurement in Au+Au

Longitudinal polarization

- We can expect $\overline{P}_{\Lambda/\overline{\Lambda}}$ along \widehat{z} , \overline{P}_{z} , coming from flow-driven shear in the $\widehat{x} - \widehat{y}$ plane
 - Measure with $\langle \cos{(\theta_p^*)} \rangle$ as a function of $\varphi_{\Lambda/\overline{\Lambda}} \Psi_2$
- Naïvely expect $\langle \cos(\theta_{\rm p}^*) \rangle \propto \sin(\varphi_{\Lambda/\overline{\Lambda}} \Psi_2)$

Longitudinal polarization: previous measurement

- We can expect $\overline{P}_{\Lambda/\overline{\Lambda}}$ along \widehat{z} , \overline{P}_{z} , coming from flow-driven shear in the $\widehat{x} - \widehat{y}$ plane
 - Measure with $\langle \cos(\theta_p^*) \rangle$ as a function of $\varphi_{\Lambda/\overline{\Lambda}} \Psi_2$
- Naïvely expect $\langle \cos(\theta_{\rm p}^*) \rangle \propto \sin(\varphi_{\Lambda/\overline{\Lambda}} \Psi_2)$
- Non-zero, sinusoidal $\overline{\mathrm{P}}_z$ measured by STAR in 2019

P_z : sign problem

- Some model studies predicted this behavior with the correct sign
 - (3+1)D PICR hydro.: Y. Xie, et. al., EPJ C 80, 39 (2020)
 - Chiral kinetic: Y. Sun, et. al., PRC 99, 011903(R) (2019)
- Others predicted the incorrect sign
 - UrQMD+hydro: F. Becattini, *et. al.*, PRL.120.012302 (2018)
 - AMPT: X. Xia, *et. al.*, PRC98.024905 (2018)

 P_z : sign problem

- Recent considerations of a shear term may resolve these discrepancies
 ξ_{μν} = ¹/₂ (∂_μβ_ν + ∂_νβ_μ)
- See also: Tuesday slides from T02

B. Fu, et al. PRL 127 (2021) 14, 142301

P_z in isobar data set

- Measurements in isobar collisions are qualitatively consistent with those in Au+Au collisions
 - Uncertainties significantly reduced

7 April 2022

3^{rd} order P_{z} : a new observable

- Through the same mechanisms, triangular flow should lead to a polarization with respect to Ψ_{3}
 - S.A. Voloshin, EPJ Web Conf. 171, 07002 arXiv:1710.08934 (2018)
- Same qualitative behavior is observed
- Model studies will provide insight

7 April 2022

3^{rd} order P_z : a new observable

- Through the same mechanisms, triangular flow should lead to a polarization with respect to Ψ_3
- Second and third-order local polarization, $P_{z, n=2,3}$ increase with centrality and have comparable magnitude
 - Above 30% centrality $P_{z, n=3}$ is systematically smaller than $P_{z, n=2}$

$P_z: \sqrt{s_{\rm NN}}$ & size dependence

- Compared to global polarization, longitudinal polarization is predicted to have a weak collision-energy dependence
- Comparison with ALICE results shows consistent $P_{\,z}$ with Au+Au at 200 GeV
 - No observed dependence on $\sqrt{s_{
 m NN}}$
- Comparison between isobar and Au+Au data in STAR shows a drop in P_z with system size for central collisions

y and $\sqrt{s_{\rm NN}}$ dependence

- $|\overline{J}|$ increases with $\sqrt{s_{\rm NN}}$, so we might expect the rapidity-integrated $\overline{P}_{\rm H}$ to also increase with $\sqrt{s_{\rm NN}}$
- Mid-rapidity region becomes more boost invariant (which doesn't support ω well) as $\sqrt{s_{\rm NN}}$ grows, so we expect mid-rapidity $\overline{P}_{\rm H}$ to fall with $\sqrt{s_{\rm NN}}$
- This is essentially a rapiditydependence argument, which we have yet to see!

Collision-energy dependence

- Theory and experiment have assumed alignment between system \widehat{J} and mid-rapidity \widehat{J}
 - Experiment approximates $\widehat{J}_{\rm syst}$ with $\widehat{J}_{\rm spec}$
 - This *would* be a good approximation if spectator and mid-rapidity regions touch

Correlation of interest

Collision-energy dependence

- Theory and experiment have assumed alignment between system \widehat{J} and mid-rapidity \widehat{J}
 - Experiment approximates $\widehat{J}_{\rm syst}$ with $\widehat{J}_{\rm spec}$
 - This would be a good approximation if spectator and mid-rapidity regions touch
- With a gap, these angular momenta are decorrelated

Correlation of interest

Collision-energy dependence

- This decorrelation becomes more significant with larger $\sqrt{s_{\rm NN}}$
- This decorrelation effect leads to a drop in \overline{P}_H with $\sqrt{s_{NN}}$
- Appropriate corrections are needed both in experiment and theory

Summary

- Low-energy measurements are possible in STAR using fixed-target collisions
 - Theory predictions disagree in the low-energy range
 - We observe large polarization at 3 and 7.2 GeV, in agreement with hydro
- High-statistics data sets at 19.6 and 27 GeV offer a factor of 10 improvement on uncertainties for the measurement on the late-stage magnetic field
 - $|\overline{B}|$ not observed with isobar and other high-statistics data sets
- System-size dependence of global polarization is not observed
- Longitudinal polarization in isobar data shows dependence on system size
- First measurement of third-order longitudinal polarization

BACKUP

Relation to vorticity

- Feedown of Lambdas from parent particles needs acounting for
- A confirmation of the fluid-like nature of the QGP

$$\begin{pmatrix} \overline{\omega}_{c} \\ B_{c}/T \end{pmatrix} = \begin{bmatrix} \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) S_{R}(S_{R} + 1) \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) S_{\overline{R}}(S_{\overline{R}} + 1) \\ \frac{2}{3} \sum_{R} \left(f_{\Lambda R} C_{\Lambda R} - \frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R} \right) (S_{R} + 1) \mu_{R} \\ \frac{2}{3} \sum_{\overline{R}} \left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}} - \frac{1}{3} f_{\overline{\Sigma}^{0} \overline{R}} C_{\overline{\Sigma}^{0} \overline{R}} \right) (S_{\overline{R}} + 1) \mu_{\overline{R}} \end{bmatrix}^{-1} \begin{pmatrix} P_{\Lambda}^{\text{meas}} \\ P_{\overline{\Lambda}}^{\text{meas}} \end{pmatrix}$$

F. Becattini,1 I. Karpenko, M.A. Lisa, I. Upsal, and S.A. Voloshin, Phys. Rev. C **95**, 054902 (2017)

Model predictions

- Various model predictions show increasing \overline{P}_{H} as $\sqrt{s_{NN}}$ decreases
- This trend is clearly carried out in experimental observations... but what happens below
 - $\sqrt{s_{\rm NN}} = 7.7 \,\,{\rm GeV?}$
 - UrQMD shows large late-stage vorticity at $\sqrt{s_{\rm NN}} = 2 {\rm ~GeV}$
 - 3FD shows peak polarization at $\sqrt{s_{\rm NN}} = 3 - 4 \, {\rm GeV}$

P^ [%]

Rev. C 101, 064908 (2020), arXiv:2001.01371

• AMPT shows peak polarization around $\sqrt{s_{\rm NN}} = 7 {\rm ~GeV}$

Y. Guo, et al. Phys. Rev. C 104 4 L041902 (2021) arXiv:2105.13481

