Jet-triggered dihadron correlations

Methodology, interpretation, results

Andrew Adare

Yale University for the STAR collaboration

RHIC/AGS Users' Meeting June 8, 2010

Correlations and jets Outstanding issues correlation methodology & interpretation background in correlations - simulations Dihadron and jet-hadron results Is there a consistent picture?

Angular correlations: current status

Away-side peaks are broadened in A+A

Dihadron double-peak structure pronounced in central events at lower pT

STAR and PHENIX 3-particle correlations suggest conical shape

e.g. STAR - PRL 102 (2009) 52302

Higher p_T : peak shapes in π^0 -h[±]

PHENIX - arXiv:1002.1077 (PRL in publication)

Au+Au shapes are broadened at lower pT^{trig}, but consistent with p +p at high pT^{trig} 2-peak away side structure not

observed for p^{trig} > 7 GeV/c

STAR h[±]-h[±]

Strong shape transition as PT^{trig}, PT^{assc} increase. What is the

What is the cause of this evolution?

Jet-hadron correlations

Trigger on fully reconstructed jet; study away side in Au+Au and p+p to access D(z).

Jet energy scale, background handling in progress (see talk by E. Bruna today)

FastJet anti- k_T with $R_c = 0.4$

Must know jet energy, fragmentation function...complicated to connect with h-h.

6

The two-source model

Jet-bkg. separation nontrivial

Are jets and UE independent? What about

- jet-medium interactions
- initial and final-state radiation

ZYAM and weak correlations

ZYAM and weak correlations

Relatively small bias where peaks are separated (peripheral, p+p, high p_T). N.B.: bkg. modulation also typically small.

8

ZYAM and weak correlations

8

Relatively small bias where peaks are separated (peripheral, p+p, high p_T). N.B.: bkg. modulation also typically small.

Background overestimated where broad peaks merge, subtracted shape highly sensitive to v₂ uncertainty for weak correlations (central, low p_T)

Simulating background effects

Graph

 $\frac{10^{3}}{10^{4}}$ (h⁺⁺h⁻)/2 dp/dp 10²

10⊢T ~ 260 MeV.

p⊤ fit range

depending on

<u>Pythia jets + thermal bkg.</u>

Generate ~20 GeV PYTHIA p+p jets for reference correlation Embed jets in isotropic thermal background Background multiplicity from STAR central dN^{ch}/dŋ

$$A = \frac{dN^{ch}}{d\eta} \frac{N^{all}}{N^{ch}} \Delta \eta \sim 2000$$

 $dN/dp_T = A \exp(-p_T/T)$

fits to STAR

h spectra

2.5

p_T GeV/c

A. Adare

Distinguish 2 particle sources: jet (J) and background (BG).

 $N^{A,B} = total \# triggers, partners.$ $n^{A,B} = N^{A,B}/N_{events}.$

If all triggers are from jets, background introduces an uncorrelated pedestal: D = A B

$$\int d\Delta \phi \frac{1}{N_J^A} \frac{dN_{J-BG}^{AB}}{d\Delta \phi} = \frac{n_{BG}^B}{2\pi}$$

Distinguish 2 particle sources: jet (J) and background (BG).

 $N^{A,B}$ = total # triggers, partners. $n^{A,B} = N^{A,B}/N_{events}$.

If all triggers are from jets, background introduces an uncorrelated pedestal: D = AB

$$\int d\Delta \phi \frac{1}{N_J^A} \frac{dN_{J-BG}^{AB}}{d\Delta \phi} = \frac{n_{BG}^B}{2\pi}$$

If $n^{B} > 0$, adding BG triggers does not change the total per-trigger pair yield N^{AB}/N^{A} .

A. Adare

Distinguish 2 particle sources: jet (J) and background (BG).

 $N^{A,B}$ = total # triggers, partners. $n^{A,B} = N^{A,B}/N_{events}$.

If all triggers are from jets, background introduces an uncorrelated pedestal: D = AB

$$\int d\Delta \phi \frac{1}{N_J^A} \frac{dN_{J-BG}^{AB}}{d\Delta \phi} = \frac{n_{BG}^B}{2\pi}$$

If $n^B > 0$, adding BG triggers does not change the total per-trigger pair yield N^{AB}/N^A .

Distinguish 2 particle sources: jet (J) and background (BG).

 $N^{A,B}$ = total # triggers, partners. $n^{A,B} = N^{A,B}/N_{events}$.

If all triggers are from jets, background introduces an uncorrelated pedestal: D = AB

$$\int d\Delta \phi \frac{1}{N_J^A} \frac{dN_{J-BG}^{AB}}{d\Delta \phi} = \frac{n_{BG}^B}{2\pi}$$

If $n^{B} > 0$, adding BG triggers does not change the total per-trigger pair yield N^{AB}/N^{A} .

Adding BG triggers

Background-contaminated trigger particle sample:

$$N_J^A \to N_J^A + N_{BG}^A$$

Trigger purity f:

$$f \equiv \frac{N_J^A}{N^A} = \frac{N^A - N_{BG}^A}{N^A}$$

Jet peaks are diluted by the factor f.

But the $\Delta \phi$ -integrated yield is unchanged.

Fake trigger - true jet partner pairs add uncorrelated pedestal.

$$\int d\Delta \phi \frac{1}{N^A} \frac{dN^{AB}}{d\Delta \phi} = \frac{1}{2\pi} (n^B_{BG} + n^B_J)$$

Adding BG triggers

Background-contaminated trigger particle sample:

$$N_J^A \to N_J^A + N_{BG}^A$$

Trigger purity f:

$$f \equiv \frac{N_J^A}{N^A} = \frac{N^A - N_{BG}^A}{N^A}$$

Jet peaks are diluted by the factor f.

But the $\Delta \phi$ -integrated yield is unchanged.

Fake trigger - true jet partner pairs add uncorrelated pedestal.

$$\int d\Delta \phi \frac{1}{N^A} \frac{dN^{AB}}{d\Delta \phi} = \frac{1}{2\pi} (n^B_{BG} + n^B_J) + \frac{fn^B_J}{+} + \frac{\text{suppressed}}{(1-f)n^B_J} + \frac{raised}{\text{pedestal}}$$

h_{jet}-h correlations

What if we require the trigger particle to be part of a reconstructed jet?

In each event, measure angular distance ΔR to nearest jet for each trigger particle A:

$$\Delta R \equiv \sqrt{(\phi_{jet} - \phi_A)^2 + (\eta_{jet} - \eta_A)^2}$$

Require $\Delta R < R_C$ for h_{jet}-h.

How does shape, yield change vs. inclusive h-h?

PTPORTUPIND 3.53.52.52.51.51.51.50.5

PT^A 2-3 GeV/c pT^B I-2 GeV/c

1

2

 $\Delta \phi$ (rad)

3

0

-1

To start: produce h-h correlations in pythia.

3

To start: produce h-h correlations in pythia.

Add isotropic thermal background; calculate h_{jet} -h. Trigger particles are inside $\Delta R = R_C = 0.4$.

To start: produce h-h correlations in pythia.

Add isotropic thermal background; calculate h_{jet} -h. Trigger particles are inside $\Delta R = R_C = 0.4$.

Background pedestal:

 $\frac{1}{2\pi * dN_{ch}/d\eta \Delta \eta * N_{all}/N_{ch} *}{N_{th}(1-2 \text{ GeV})/N_{th}(all \text{ pt})}$

 $1/2\pi * 1300 * 1.5 * 0.105 = 32.8$

h_{jet}-h correlations - MC

To start: produce h-h correlations in pythia.

Add isotropic thermal background; calculate h_{jet} -h. Trigger particles are inside $\Delta R = R_C = 0.4$.

Background pedestal:

 $\frac{1}{2\pi} \frac{* dN_{ch}}{d\eta} \frac{\Delta \eta * N_{all}}{N_{ch}} \frac{*}{N_{th}} \frac{N_{ch}}{I-2 \text{ GeV}} \frac{N_{th}}{N_{th}} \frac{1}{2} \frac{1$

 $1/2\pi * 1300 * 1.5 * 0.105 = 32.8$

Pedestal subtraction recovers PYTHIA yield (dark points).

h_{jet}-h correlations - MC

p^A 2-3 GeV/c p^B I-2 GeV/c

h∆b/^{aa}Nb ^aN/

To start: produce h-h correlations in pythia.

Add isotropic thermal background; calculate h_{jet} -h. Trigger particles are inside $\Delta R = R_C = 0.4$.

Background pedestal:

 $\frac{1}{2\pi} \frac{* dN_{ch}}{d\eta} \frac{\Delta \eta * N_{all}}{N_{ch}} \frac{*}{N_{th}} \frac{N_{ch}}{I-2 \text{ GeV}} \frac{N_{th}}{N_{th}} \frac{A\eta * N_{all}}{I-2 \text{ GeV}} \frac{N_{th}}{I-2 \text{ GeV}} \frac$

 $1/2\pi * 1300 * 1.5 * 0.105 = 32.8$

Pedestal subtraction recovers PYTHIA yield (dark points).

Inclusive h-h: many fake triggers

- peak yield is $f = 0.24 \times \text{the hjet-h yield}$

- pedestal raised by 1/2pi *(1-f)nBjet = 0.67 A. Adare

What is the real-world h-h bkg? 14

Uncorrelated sources at lower pT:

- additional semi-hard scatterings or un-reconstructed jets
- recombination / coalescence
- thermal fluctuations
- radially boosted soft particles

h-h interpretation complicated in A+A.

Enhancing the jet-like component adds valuable information.

A. Adare

hjet-h vs. h-h

hjet-h differs significantly from inclusive h-h:

(a) At given trigger pT, hjet-h samples harder collisions and lower-z hadrons

15

(b) Fewer triggers from soft bkg. sources: thermal, ReCo, hydro, etc.

(c) hjet-h "misses" some jets from 2nd, 3rd, nth semihard scattering...not sampling minbias jet cross-section.

Also: hjet-h results may depend sensitively on jet definition! Under investigation.

Trying h_{jet}-h in Au+Au data

To maximize recoil parton L and ΔE , trigger on hadrons near energetic reconstructed jets.

FastJet anti- k_T with $R_C = 0.4$

p_{T,jet} > 10 GeV/c, corrected for background:

 $p_{T,jet} = p_{T,meas} - \rho A$

fragment particle $p_T > 2 \text{ GeV/c}$

6

Use STAR high-tower triggered data.

HT trigger requires > 5-6 GeV in one EMC tower

- High Tower trigger energy mostly neutral
- HT trigger, + using high p_T charged tracks, accesses hard jets

Additional considerations

Event selection

Reject events with no reconstructed jets, even for inclusive trigger particles. Same events sampled for ΔR vs. inclusive correlations.

Acceptance effect

Requiring full jet cone in STAR η acceptance increases near-side assoc. yield. Thus some enhancement occurs even with no background. (Corrections are possible)

A. Adare

Blue: Event contains a 10+ GeV jet, but no ΔR cut

- **Red**: Same events, with $\Delta R < 0.4$
- Same v_2 currently used for both as initial estimation
- ZYAM applied for consistency with STAR h-h analyses

How to interpret enhanced correlation?

- sampling higher Q² events
- removing non-jet background?

Au+Au yields larger than p+p at low p_T^B ...qualitatively consistent with measured h-h I_{AA} .

Blue: Event contains a 10+ GeV jet, but no ΔR cut

- **Red**: Same events, with $\Delta R < 0.4$
- Same v_2 currently used for both as initial estimation
- ZYAM applied for consistency with STAR h-h analyses

How to interpret enhanced correlation?

- sampling higher Q² events
- removing non-jet background?

Au+Au yields larger than p+p at low p_T^B ...qualitatively consistent with measured h-h I_{AA} .

Blue: Event contains a 10+ GeV jet, but no ΔR cut

- **Red**: Same events, with $\Delta R < 0.4$
- Same v_2 currently used for both as initial estimation
- ZYAM applied for consistency with STAR h-h analyses

How to interpret enhanced correlation?

- sampling higher Q^2 events
- removing non-jet background?

Au+Au yields larger than p+p at low p_T^B ...qualitatively consistent with measured h-h I_{AA}.

Blue: Event contains a 10+ GeV jet, but no ΔR cut

- **Red**: Same events, with $\Delta R < 0.4$
- Same v_2 currently used for both as initial estimation
- ZYAM applied for consistency with STAR h-h analyses

How to interpret enhanced correlation?

- sampling higher Q^2 events
- removing non-jet background?

Au+Au yields larger than p+p at low p_T^B ...qualitatively consistent with measured h-h I_{AA}.

Understanding the results....

What, precisely, causes the peak enhancement in h_{jet}-h correlations?

19

- Selection of more energetic partons?
- Reduction of uncorrelated background?

- If both, what is the relative contribution of each effect?

What is the true v₂ of trigger hadrons inside jet cones?

These are topics of active investigation...many ideas to study effects more differentially.

Stay tuned!

Conclusions

Triggering on more jet-like particles

- strongly enhances the correlation strength
- diminishes evidence of 2-peak features, rather than enhancing them.
- accesses harder events (esp. in triggered data) and shouldn't be directly compared with MB h-h

- much of the "background" removed in h_{jet} -h may very well be from un-associated jet production...requires careful interpretation.

Backups

h_{jet}-h correlations

What if we require the trigger particle to be part of a reconstructed jet?

In each event, measure angular distance ΔR to nearest jet for each trigger particle A:

$$\Delta R \equiv \sqrt{(\phi_{jet} - \phi_A)^2 + (\eta_{jet} - \eta_A)^2}$$

Require $\Delta R < R_C$ for h_{jet} -h.

Trigger purity fraction in HT data ²³

A. Adare

pi0-h IAA

IAA > RAA, and rises with trigger pt reflects hardening of spectra Enhancement at low pTB

A. Adare

v2 input

Pair v2 from fit to STAR data

25

Mean of event-plane and v2{4} measurements used Assume (as usual) v2AB = v2A*v2B

Important assumption: v2(DR < 0.4) = inclusive v2

However: v2 uncertainty is reduced in DR < 0.4 sample when propagated to subtracted result (larger peak yields).

PHENIX h-h away-side IAA

A. Adare

dN/dp_{Ttrig}, 2007 HTAu+Au data ²⁷

A. Adare

Zero Yield At Minimum ZYAM Systematic Uncertainty

- ? hins

ZYAM continues to be used in correlation analyses

Fluctuations at ZYAM point can <u>under</u>estimate background

Absolute background normalization avoids such biases....

However, any known bkg. normalization methods use 2source factorization, requiring some bkg. shape assumption.