Jet-triggered dihadron correlations

Methodology, interpretation, results
Andrew Adare

Yale University
for the
STAR collaboration

RHIC/AGS Users' Meeting June 8, 2010

Outline

Correlations and jets
Outstanding issues
correlation methodology \& interpretation
background in correlations - simulations
Dihadron and jet-hadron results
Is there a consistent picture?

Angular correlations: current status

Away-side peaks are broadened in A+A
Dihadron double-peak structure pronounced in central events at lower PT

STAR and PHENIX 3-particle correlations suggest conical shape e.g. STAR - PRL IO2 (2009) 52302

PHENIX	PRC 78, 014901 (2008)
(b) $3-4 \times 1-2 \mathrm{GeV} / \mathrm{c}$	
	$\times 1.5$
0	2 (rad)

Higher pT: peak shapes in $\pi^{0}-h^{ \pm}$

PHENIX - arXiv:I002.I 077 (PRL in publication)

Au +Au shapes are broadened at lower pt trig, but consistent with P +p at high $\mathrm{pt}^{\text {trig }}$

2-peak away side structure not observed for $\mathrm{PT}^{\text {trig }}$ $>7 \mathrm{GeV} / \mathrm{c}$

STAR $h^{ \pm}-h^{ \pm}$

Strong shape transition as $\mathrm{PT}^{\text {trig }}, \mathrm{PT}^{\text {assc }}$ increase.

What is the cause of this evolution?

Jet-hadron correlations

Trigger on fully reconstructed jet; study away side in Au+Au and $\mathrm{p}^{+} \mathrm{p}$ to access $\mathrm{D}(\mathrm{z})$.

Jet energy scale, background handling in progress (see talk by E. Bruna today)

FastJet anti-kt with $R_{c}=0.4$
Must know jet energy, fragmentation
function...complicated to connect with h-h.

The two-source model

Jet-bkg. separation nontrivial
Are jets and UE independent? What about

- jet-medium interactions
- initial and final-state radiation

Background shape:
$\mathrm{B}_{0}\left(\mathrm{I}+2 \mathrm{v}_{2}{ }^{\mathrm{AB}} \cos 2 \Delta \phi\right)$ is an approximation

Higher moments (esp. v3) may be non-negligible

ZYAM and weak correlations

ZYAM and weak correlations

Relatively small bias where peaks are separated (peripheral, p+p, high pT). N.B.: bkg. modulation also typically small.

ZYAM and weak correlations

Relatively small bias where peaks are separated (peripheral, p+p, high pT). N.B.: bkg. modulation also typically small. Background overestimated where broad peaks merge, subtracted shape highly sensitive to v_{2} uncertainty for weak correlations (central, low PT)

Simulating background effects

Pythia jets + thermal bkg.
Generate $\sim 20 \mathrm{GeV}$ PYTHIA p+p jets for reference correlation

Graph

Embed jets in isotropic thermal background Background multiplicity from STAR central dNch/dn

$$
A=\frac{d N^{c h}}{d \eta} \frac{N^{\text {all }}}{N^{c h}} \Delta \eta \sim 2000
$$

Background effects: expectations 10

Distinguish 2 particle sources: jet (J) and background (BG).
$N^{A, B}=$ total \# triggers, partners. $\quad n^{A, B}=N^{A, B} / N_{\text {events }}$.
If all triggers are from jets, background introduces an uncorrelated pedestal:

$$
\int d \Delta \phi \frac{1}{N_{J}^{A}} \frac{d N_{J-B G}^{A B}}{d \Delta \phi}=\frac{n_{B G}^{B}}{2 \pi}
$$

Background effects: expectations 10

Distinguish 2 particle sources: jet (J) and background (BG).
$N^{A, B}=$ total \# triggers, partners. $\quad n^{A, B}=N^{A, B} / N_{\text {events }}$.
If all triggers are from jets, background introduces an uncorrelated pedestal:

$$
\int d \Delta \phi \frac{1}{N_{J}^{A}} \frac{d N_{J-B G}^{A B}}{d \Delta \phi}=\frac{n_{B G}^{B}}{2 \pi}
$$

If $n^{B}>0$, adding $B G$ triggers does not change the total per-trigger pair yield $N^{A B} / N^{A}$.

Example event:

2*3 / 2 pairs/trigger

A. Adare

Background effects: expectations 10

Distinguish 2 particle sources: jet (J) and background (BG).
$N^{A, B}=$ total \# triggers, partners. $\quad n^{A, B}=N^{A, B} / N_{\text {events }}$.
If all triggers are from jets, background introduces an uncorrelated pedestal:

$$
\int d \Delta \phi \frac{1}{N_{J}^{A}} \frac{d N_{J-B G}^{A B}}{d \Delta \phi}=\frac{n_{B G}^{B}}{2 \pi}
$$

If $\mathrm{n}^{\mathrm{B}}>0$, adding BG triggers does not change the total per-trigger pair yield $N^{A B} / N^{A}$.

Example event:

2*3 / 2 pairs/trigger

Add I fake trigger:
$(2+\mid) * 3 /(2+\mid)$
pairs/trigger
A. Adare

Background effects: expectations 10

Distinguish 2 particle sources: jet (J) and background (BG).
$N^{A, B}=$ total \# triggers, partners. $\quad n^{A, B}=N^{A, B} / N_{\text {events }}$.
If all triggers are from jets, background introduces an uncorrelated pedestal:

$$
\int d \Delta \phi \frac{1}{N_{J}^{A}} \frac{d N_{J-B G}^{A B}}{d \Delta \phi}=\frac{n_{B G}^{B}}{2 \pi}
$$

If $\mathrm{n}^{\mathrm{B}}>0$, adding BG triggers does not change the total per-trigger pair yield $N^{A B} / N^{A}$.

Example event:
$2 * 3$ / 2 pairs/trigger

A. Adare

Add I fake trigger:
$(2+1) * 3 /(2+\mid)$
pairs/trigger
But the correlation is weakened....

Adding BG triggers

Background-contaminated trigger particle sample:

$$
N_{J}^{A} \rightarrow N_{J}^{A}+N_{B G}^{A}
$$

Trigger purity f:

$$
f \equiv \frac{N_{J}^{A}}{N^{A}}=\frac{N^{A}-N_{B G}^{A}}{N^{A}}
$$

Jet peaks are diluted by the factor f .
But the $\Delta \phi$-integrated yield is unchanged.
Fake trigger - true jet partner pairs add uncorrelated pedestal.

$$
\int d \Delta \phi \frac{1}{N^{A}} \frac{d N^{A B}}{d \Delta \phi}=\frac{1}{2 \pi}\left(n_{B G}^{B}+n_{J}^{B}\right)
$$

Adding BG triggers

Background-contaminated trigger particle sample:

$$
N_{J}^{A} \rightarrow N_{J}^{A}+N_{B G}^{A}
$$

Trigger purity f:

$$
f \equiv \frac{N_{J}^{A}}{N^{A}}=\frac{N^{A}-N_{B G}^{A}}{N^{A}}
$$

Jet peaks are diluted by the factor f .
But the $\Delta \phi$-integrated yield is unchanged.
Fake trigger - true jet partner pairs add uncorrelated pedestal.

$$
\int d \Delta \phi \frac{1}{N^{A}} \frac{d N^{A B}}{d \Delta \phi}=\frac{1}{2 \pi}\left(n_{B G}^{B}+\left(n_{J}^{B}\right)\right) \begin{array}{cc}
f n_{J}^{B} & \begin{array}{c}
\text { suppressed } \\
\text { peak } \\
+ \\
\hline
\end{array} \\
\begin{array}{c}
+f) n_{J}^{B} \\
\text { raised } \\
\text { pedestal }
\end{array}
\end{array}
$$

$\mathrm{h}_{\text {jet }}$-h correlations

What if we require the trigger particle to be part of a reconstructed jet?

In each event, measure angular distance ΔR to nearest jet for each trigger particle A:
$\Delta R \equiv \sqrt{\left(\phi_{j e t}-\phi_{A}\right)^{2}+\left(\eta_{j e t}-\eta_{A}\right)^{2}}$

Require $\Delta R<R_{c}$ for $h_{j e t-h}$.
How does shape, yield change vs. inclusive h-h?

$\mathrm{h}_{\text {jet-h }}$ correlations - MC

$\mathrm{h}_{\text {jet-}}$ h correlations - MC

To start: produce h-h correlations in pythia.

$\mathrm{h}_{\text {jet-h }}$ correlations - MC

PT^{\wedge} 2-3 GeV/c
 $\mathrm{PT}^{\mathrm{B}} \mid-2 \mathrm{GeV} / \mathrm{c}$

To start: produce h-h correlations in pythia.
Add isotropic thermal background; calculate $h_{\text {jet }}-\mathrm{h}$. Trigger particles are inside $\Delta \mathrm{R}=\mathrm{R}_{\mathrm{c}}=$ 0.4 .

$\mathrm{h}_{\text {jet-h }}$ correlations - MC

To start: produce h-h correlations in pythia.
Add isotropic thermal background; calculate $h_{\text {jet }}-\mathrm{h}$. Trigger particles are inside $\Delta \mathrm{R}=\mathrm{R}_{\mathrm{c}}=$ 0.4 .

Background pedestal:
$\mathrm{I} / 2 \pi$ * $\mathrm{d} \mathrm{N}_{\mathrm{cc}} / \mathrm{dn} \Delta \eta * \mathrm{~N}_{\mathrm{al} /} / \mathrm{N}_{\mathrm{ch}}$ * $\mathrm{N}_{\mathrm{th}}(\mathrm{I}-2 \mathrm{GeV}) / \mathrm{N}_{\mathrm{th}}(\mathrm{all} \mathrm{pt})$
$1 / 2 \pi * 1300 * 1.5 * 0.105=32.8$

$\mathrm{h}_{\text {jet-h }}$ correlations - MC

PT^{A} 2-3 GeV/c
 PT^{B} |-2 GeV/c

To start: produce h-h correlations in pythia.
Add isotropic thermal background; calculate $h_{\text {jet }}$-h. Trigger particles are inside $\Delta R=R c=$ 0.4 .

Background pedestal:
$\mathrm{I} / 2 \pi$ * $\mathrm{d} \mathrm{N}_{\mathrm{cc}} / \mathrm{dn} \Delta \eta * \mathrm{~N}_{\mathrm{al} /} / \mathrm{N}_{\mathrm{ch}}$ * $\mathrm{N}_{\mathrm{th}}(\mathrm{I}-2 \mathrm{GeV}) / \mathrm{N}_{\mathrm{th}}(\mathrm{all} \mathrm{pt})$
$1 / 2 \pi * 1300 * 1.5 * 0.105=32.8$
Pedestal subtraction recovers PYTHIA yield (dark points).

$h_{\text {jet-h }}$ correlations - MC

PT^{A} 2-3 GeV/c
 $\mathrm{PT}^{\mathrm{B}} \mid-2 \mathrm{GeV} / \mathrm{c}$

I/NA dNAB/d $\mathrm{N}^{\mathrm{A}} \Phi$

To start: produce h-h correlations in pythia.
Add isotropic thermal background; calculate $\mathrm{h}_{\text {jet }}-\mathrm{h}$. Trigger particles are inside $\Delta \mathrm{R}=\mathrm{R}_{\mathrm{c}}=$ 0.4 .

Background pedestal:
$\mathrm{I} / 2 \pi * \mathrm{~d} \mathrm{~N}_{\mathrm{cc}} / \mathrm{d} \mathrm{\eta} \Delta \eta * \mathrm{~N}_{\mathrm{al} /} / \mathrm{N}_{\mathrm{ch}}$ * $\mathrm{N}_{\mathrm{th}}(\mathrm{l}-2 \mathrm{GeV}) / \mathrm{N}_{\mathrm{th}}($ all pt$)$
$1 / 2 \pi * 1300 * 1.5 * 0.105=32.8$
Pedestal subtraction recovers PYTHIA yield (dark points).

Inclusive h-h: many fake triggers

- peak yield is $f=0.24 \times$ the hjet-h yield
- pedestal raised by I/2pi *(I-f)nBjet $=0.67$
A. Adare

What is the real-world h-h bkg?

Uncorrelated sources at lower PT:

- additional semi-hard scatterings or un-reconstructed jets
- recombination / coalescence
- thermal fluctuations
- radially boosted soft particles
....?
h-h interpretation complicated in A+A.
Enhancing the jet-like component adds valuable information.
A. Adare
hjet-h vs.h-h
hjet-h differs significantly from inclusive h-h:
(a) At given trigger pT, hjet-h samples harder collisions and lower-z hadrons
(b) Fewer triggers from soft bkg. sources: thermal, ReCo, hydro, etc.
(c) hjet-h "misses" some jets from 2nd, 3rd, nth semihard scattering...not sampling minbias jet cross-section.

Also: hjet-h results may depend sensitively on jet definition! Under investigation.

Trying $h_{\text {jet }}$ h in $\mathrm{Au}+\mathrm{Au}$ data

To maximize recoil parton L and ΔE, trigger on hadrons near energetic reconstructed jets.

FastJet anti- k_{T} with $\mathrm{Rc}=0.4$
PT,jec $>10 \mathrm{GeV} / \mathrm{c}$, corrected for background:

PT,jet $=P T$, meas $-\rho A$
fragment particle $\mathrm{PT}^{>}>2 \mathrm{GeV} / \mathrm{c}$

Use STAR high-tower triggered data.
HT trigger requires > 5-6 GeV in one EMC tower

- High Tower trigger energy mostly neutral
- HT trigger, + using high pt charged tracks, accesses hard jets

Additional considerations

Event selection

Reject events with no reconstructed jets, even for inclusive trigger particles. Same events sampled for ΔR vs. inclusive correlations.

Pythia $\mathrm{p}^{+} \mathrm{p}$

$\mathrm{h}_{\mathrm{jet}}-\mathrm{h}$ in HT Au+Au, $\mathrm{p}^{+} \mathrm{p}$

Blue: Event contains a $10+\mathrm{GeV}$ jet, but no ΔR cut

Red: Same events, with $\Delta R<0.4$
Same v_{2} currently used for both as initial estimation

ZYAM applied for consistency with STAR h-h analyses

How to interpret enhanced correlation?

- sampling higher Q^{2} events
- removing non-jet background?

Au+Au yields larger than $p^{+} p$ at low PT^{B}...qualitatively consistent with measured h-h laA.

$\mathrm{h}_{\mathrm{jet}}-\mathrm{h}$ in HT Au+Au, $\mathrm{p}^{+} \mathrm{p}$

Blue: Event contains a $10+\mathrm{GeV}$ jet, but no $\Delta \mathrm{R}$ cut

Red: Same events, with $\Delta R<0.4$
Same v_{2} currently used for both as initial estimation

ZYAM applied for consistency with STAR h-h analyses

How to interpret enhanced correlation?

- sampling higher Q^{2} events
- removing non-jet background?

Au+Au yields larger than $p^{+} p$ at low PT^{B}...qualitatively consistent with measured h-h laA.

$\mathrm{h}_{\mathrm{jet}}-\mathrm{h}$ in HT Au+Au, $\mathrm{p}^{+} \mathrm{p}$

Blue: Event contains a $10+\mathrm{GeV}$ jet, but no ΔR cut

Red: Same events, with $\Delta R<0.4$
Same v_{2} currently used for both as initial estimation

ZYAM applied for consistency with STAR h-h analyses
How to interpret enhanced correlation?

- sampling higher Q^{2} events
- removing non-jet background?
$\mathrm{Au}+\mathrm{Au}$ yields larger than $\mathrm{p}+\mathrm{p}$ at low PT^{B}...qualitatively consistent with measured h-h laA.

$\mathrm{h}_{\mathrm{jet}}-\mathrm{h}$ in HT Au+Au, $\mathrm{p}^{+} \mathrm{p}$

Blue: Event contains a $10+\mathrm{GeV}$ jet, but no $\Delta \mathrm{R}$ cut

Red: Same events, with $\Delta R<0.4$
Same v_{2} currently used for both as initial estimation

ZYAM applied for consistency with STAR h-h analyses

How to interpret enhanced correlation?

- sampling higher Q^{2} events
- removing non-jet background?
$\mathrm{Au}+\mathrm{Au}$ yields larger than $\mathrm{p}^{+} \mathrm{p}$ at low PT^{B}...qualitatively consistent with measured h-h laA.

Understanding the results....

What, precisely, causes the peak enhancement in $h_{\text {jet }}-h$ correlations?

- Selection of more energetic partons?
- Reduction of uncorrelated background?
- If both, what is the relative contribution of each effect?

What is the true v_{2} of trigger hadrons inside jet cones?
These are topics of active investigation...many ideas to study effects more differentially.

Stay tuned!

Conclusions

Triggering on more jet-like particles

- strongly enhances the correlation strength
- diminishes evidence of 2-peak features, rather than enhancing them.
- accesses harder events (esp. in triggered data) and shouldn't be directly compared with MB h-h
- much of the "background" removed in $h_{\text {jet-h }}$ may very well be from un-associated jet production...requires careful interpretation.

Backups

$h_{\text {jet-h }}$ correlations

What if we require the trigger particle to be part of a reconstructed jet? In each event, measure angular distance ΔR to nearest jet for each trigger particle A:

$$
\Delta R \equiv \sqrt{\left(\phi_{j e t}-\phi_{A}\right)^{2}+\left(\eta_{j e t}-\eta_{A}\right)^{2}}
$$

Require $\Delta R<R_{c}$ for $h_{\text {jeteth }}$.

Trigger purity fraction in HT data ${ }^{23}$

A. Adare

$I A A>R A A$, and rises with trigger pt reflects hardening of spectra

Enhancement at low pTB

A. Adare

v2 input

Pair v2 from fit to STAR data

Mean of event-plane and $v 2\{4\}$ measurements used
Assume (as usual) v2AB = v2A*v2B
Important assumption: v2($\mathrm{DR}<0.4$) $=$ inclusive v2
However: v2 uncertainty is reduced in DR < 0.4 sample when propagated to subtracted result (larger peak yields).

PHENIX h-h away-side IAA

dN/dPTtrig, 2007 HT Au+Au data ${ }^{27}$

A. Adare

Zero Yield At Minimum

ZYAM continues to be used in correlation analyses
Fluctuations at ZYAM point can underestimate background

Absolute background normalization avoids such biases....

However, any known bkg. normalization methods use 2source factorization, requiring some bkg. shape assumption.

