Transverse Spin Results from STAR

J. Kevin Adkins for the STAR Collaboration University of Kentucky RHIC & AGS Annual Users' Meeting 2018 June 12, 2018

Describing the Proton's Spin Structure

Distribution	Partons	Name	Proton Polarization
f(x)	q, G	Momentum	Unpolarized
$\Delta f(x)$	q, G	Helicity	Longitudinal
h ₁ (x)	q	Transversity	Transverse

*At leading twist, and in the collinear factorization

Proton Momentum

Factorization Schemes

- Leading twist collinear factorization fails to accurately reproduce large inclusive pion single-spin asymmetries (SSA)
 - It predicts these results should be nearly zero!
- SSA allow for detailed study of the proton's transverse spin structure
- TMD factorization used when there are two momentum scales: $\Lambda_{QCD} \le p_T \le Q$
 - Hadrons in jets, W/Z boson, etc.
- Twist-3 collinear correlators are used to describe results where there is a single momentum scale: $\Lambda_{\rm QCD}$ << Q
 - Inclusive jet, direct-γ

arXiv:1602.03922

What Can We Learn Using SSA in $p^{\uparrow}p$?

Inclusive jet asymmetry A_N for reconstructed W^\pm and Z^0 Direct γ Drell-Yan

Twist-3 quark-gluon correlators
 Sivers TMD
 Sivers function sign change

What Can We Learn Using SSA in p[†]p?

What Can We Learn Using SSA in p[†]p?

What Can We Learn Using SSA in p[†]p?

Why Look to p+p? Kinematic Coverage!

- STAR covers a similar range in x to that of SIDIS results
 - Important for studies of TMD universality
- Much higher in Q²
 - We can learn something about the evolution of TMDs

Relativistic Heavy Ion Collider

Time [weeks in physics]

The Solenoidal Tracker At RHIC (STAR)

Inclusive Jet Asymmetry (A_N)

- In p+p, A_N is sensitive to the initial state quark-gluon twist-3 correlators
 - Correlators described by the Efremov-Teryaev-Qiu-Sterman (ETQS) function
 - ETQS function related to leading twist Sivers TMD by $k_{\rm T}$ integration
- A_N has been measured by STAR previously at \sqrt{s} = 200 GeV

$$d\sigma_{UT} \approx d\sigma_{UU} \left[1 + A_N \sin(\phi_S) \right]$$

Inclusive Jet Asymmetry (A_N)

- In p+p, A_N is sensitive to the initial state quark-gluon twist-3 correlators
 - Correlators described by the Efremov-Teryaev-Qiu-Sterman (ETQS) function
 - ETQS function related to leading twist Sivers TMD by $k_{\rm T}$ integration
- A_N has been measured by STAR previously at √s = 200 GeV
- Twist-3 theory curves of A_N predict an asymmetry close to zero

$$d\sigma_{UT} \approx d\sigma_{UU} \left[1 + A_N \sin(\phi_S) \right]$$

A_N jet

Inclusive Jet Asymmetry (A_N)

- In p+p, A_N is sensitive to the initial state quark-gluon twist-3 correlators
 - Correlators described by the Efremov-Teryaev-Qiu-Sterman (ETQS) function
 - ETQS function related to leading twist Sivers TMD by $k_{\rm T}$ integration
- A_N has been measured by STAR previously at \sqrt{s} = 200 GeV
- Twist-3 theory curves of A_N predict an asymmetry close to zero
- Recent \sqrt{s} = 500 GeV inclusive jet A_N also consistent with zero
 - Enhanced gluon input!

$$d\sigma_{UT} \approx d\sigma_{UU} \left[1 + A_N \sin(\phi_S) \right]$$

$\sqrt{s} = 500 \text{ GeV}$

 A_N for W[±] and Z⁰

- Single-spin asymmetries using fully reconstructed W[±] and Z⁰ bosons sensitive to quark/antiquark Sivers function
 - Described by TMD factorization (M^{W/Z} sets hard scale, and p_T^{W/Z} sets soft scale)
- Provides laboratory to test sign change
 - Sivers function measured in DY/W[±]/Z⁰ asymmetries predicted to be opposite in sign from that measured in SIDIS

 A_N for W[±] and Z⁰

- Single-spin asymmetries using fully reconstructed W[±] and Z⁰ bosons sensitive to quark/antiquark Sivers function
 - Described by TMD factorization (M^{W/Z} sets hard scale, and p_T^{W/Z} sets soft scale)
- Provides laboratory to test sign change
 - Sivers function measured in DY/W[±]/Z⁰ asymmetries predicted to be opposite in sign from that measured in SIDIS
- Kinematics of W fully reconstructed:

$$\vec{p}_T^{W} = \vec{p}_T^{e} + \vec{p}_T^{\nu}$$

 Efficiency and fiducial losses accounted for with Pythia MC embedded into data

17

★ A_N results for both W⁺ and W⁻ favor theory curves which DO assume a Sivers sign change

- ★ KQ theory curves: Phys. Rev. Lett. 103, 172001
 - ★ Assume no TMD evolution
 - Evolution effects seem rather small!

Coming soon: A_N for W[±] and Z⁰ from 2017!

2017 transverse p+p run collected 350 pb⁻¹ integrated luminosity

- This increase in statistical power will provide:
 - An enhanced look at the Sivers sign change
 - Input on sea quark Sivers function
 - Additional input on TMD evolution
- EIKV theory curves: Phys. Rev. D 89, 074013 (2014)

Coming soon: Drell-Yan from 2017!

- FMS outfitted with postshower for 2017 run
 - Combined with preshower detector allows for factor of 10⁶ suppression of QCD background to signal ratio
- FMS allows for forward e⁺e⁻ DY coverage:
 - 2.5 < η < 4.0 and 4.0 GeV/c² < $M_{e^+e^-}$ < 9.0 GeV/c²
- Red square: statistical precision using 400 pb⁻¹

Coming soon: Direct γA_N from 2015 and 2017!

- Also sensitive to twist-3 quark-gluon correlators
 - Related to Sivers TMD via ETQS function
- Can give input on sign change in twist-3 factorization
- Measurements at both \sqrt{s} = 200 and 500 GeV give input on evolution of quark-gluon correlators

Coming soon: Direct γA_N from 2015 and 2017!

- Also sensitive to twist-3 quark-gluon correlators
 - Related to Sivers TMD via ETQS function
- Can give input on sign change in twist-3 factorization
- Measurements at both \sqrt{s} = 200 and 500 GeV give input on evolution of quark-gluon correlators
- Statistical projections (lines) with systematic error estimates (boxes) given below
 - Blue curves are predictions based on SIDIS results

Hadrons in jets Dihadron (IFF) asymmetry
Transversity
Collins fragmentation function
Gluon linear polarization

22

Collins Asymmetry

- Connects the initial state quark spin (transversity) to the final state pion distribution within the jet (Collins FF)
- Hadronized pions within jets are asymmetrically distributed
 - Looking at the difference between spin states will allow access to transversity distribution and Collins FF via asymmetry measurements

Collins Asymmetry

I ransversity × Collins

- Connects the initial state quark spin (transversity) to the final state pion distribution within the jet (Collins FF)
- Hadronized pions within jets are asymmetrically distributed
 - Looking at the difference between spin states will allow access to transversity distribution and Collins FF via asymmetry measurements

24

$$d\sigma_{UT} \approx d\sigma_{UU} \left[1 + A_{UT}^{\sin(\phi_s - \phi_h)} \sin(\phi_s - \phi_h) + A_{UT}^{\sin(\phi_s - 2\phi_h)} \sin(\phi_s - 2\phi_h) \right]$$

Collins-like Asymmetry

- Connects the initial state quark spin (transversity) to the final state pion distribution within the jet (Collins FF)
- Hadronized pions within jets are asymmetrically distributed
 - Looking at the difference between spin states will allow access to transversity distribution and Collins FF via asymmetry measurements
- Collins-like: Same as Collins but for *linearly* polarized gluons

$$d\sigma_{UT} \approx d\sigma_{UU} \left[1 + A_{UT}^{\sin(\phi_s - \phi_h)} \sin(\phi_s - \phi_h) + \overline{A_{UT}^{\sin(\phi_s - 2\phi_h)} \sin(\phi_s - 2\phi_h)} \right]$$

Linearly Polarized Gluons × Collins-like

Collins-like vs. p_T and z = 500 GeV

- First ever measurement of Collins-like asymmetry!
- No statistically significant asymmetry observed, even when both charge states statistics combined

Collins-like vs. p_T and z = 500 GeV

- First ever measurement of Collins-like asymmetry!
- No statistically significant asymmetry observed, even when both charge states statistics combined
- Will give first ever input to constrain theoretical models

$\sqrt{s} = 500 \text{ GeV}$

 Multi-dimensional binning scheme provides the fine details that could be lost if integrated over

• (p_T,η) related to (Q^2,x) dependence of transversity

Collins vs. p_T and j_T

Collins vs. z

√s = 500 GeV

 $A_{UT}^{sin(\varphi_{s}^{}-\varphi_{\mu}^{})}$ + p \rightarrow jet + π^{\pm} + X \sqrt{s} = 500 GeV $< \eta_{iet} < 1 \langle p_{Tiet} \rangle = 31.0 \text{ GeV/c}$ 0.05 STAR 2011 π⁺ STAR 2011 π 0 Model Curves Positive: π* Model Curves Negative: n -0.05 DMP+2013 44 KPRY WW KPRY-NLL 0.1 0.2 0.3 0.4 0.5 0.6 z

Theory curves: Phys. Lett. B773 (2017) 300-306 Phys. Lett. B774 (2017), 635-642

- Theory curves use transversity and Collins
 FFs extracted from SIDIS and e⁺e⁻
- STAR results agree quite well with these curves
- Points to universality of Collins function and small factorization breaking effects!

Collins vs. p_T and j_T

√s = 200 GeV

This will very soon be replaced by final results, with binning similar to 500 GeV!

Combined with results from 500 GeV analysis gives good look at Q² evolution

Theory Comparisons

- Recent theory investigations used transversity and Collins FF extracted from SIDIS and e⁺e⁻ results
 - Compared to STAR preliminary results from \sqrt{s} = 200 and 500 GeV at same kinematics
- Theory results plotted without (top) and with (bottom) evolution applied to the TMDs
 - Both sets match STAR data well, pointing to slow evolution with Q²
- Within error budget, we see no effects of factorization breaking for Collins asymmetry measured in jets

Phys. Lett. B 744 (2017)

Di-hadron or Interference Fragmentation Function (IFF) Asymmetry

- Correlates quark polarization to azimuthal distribution of final state hadron pairs
- IFF process is collinear, where Collins is dependent upon transverse momentum
- Survives integration over transverse momentum, leading to simpler extraction of transversity
- $\phi_{SR} = \phi_S \phi_R$ is angle between spin vector and hadron scattering plane

• Experimentally: $d\sigma_{UT} \approx d\sigma_{UU} \left[1 + A_{UT}^{\sin(\phi_{SR})} \sin(\phi_S - \phi_R) \right]$

- ★ 2012 data reinforces the message from the previous 2006 result (right side), but with much higher statistical precision!
- Asymmetry increases with η, which is directly related to increasing momentum fraction

STAR Di-hadron

 $\sqrt{s} = 500 \text{ GeV}$

- \star 500 GeV results again show significant asymmetries
- ★ Higher COM energy probes an x-range on the upper end of SIDIS results, but with a higher effective Q²
- ★ Offers great chance to compare with 200 GeV IFF, and learn something about Q² evolution of transversity

35

- ★ 500 GeV results again show significant asymmetries
- ★ Higher COM energy probes an x-range on the upper end of SIDIS results, but with a higher effective Q²
- ★ Offers great chance to compare with 200 GeV IFF, and learn something about Q² evolution of transversity
- ★ Decent agreement for similar kinematics, and when compared to theory that is fit to SIDIS and e⁺e⁻ experiments

- STAR has the ability to access many observables that are sensitive to lots of different transverse spin related phenomena:
 - Sivers function
 - Twist-3 quark-gluon correlation functions
 - Transversity and linearly polarized gluons
 - Collins(-like) and interference fragmentation functions

- STAR has the ability to access many observables that are sensitive to lots of different transverse spin related phenomena:
 - Sivers function
 - Twist-3 quark-gluon correlation functions
 - Transversity and linearly polarized gluons
 - Collins(-like) and interference fragmentation functions
- The ability to access many of these at two different center-of-mass energies means we can give strong input on QCD evolution

- STAR has the ability to access many observables that are sensitive to lots of different transverse spin related phenomena:
 - Sivers function
 - Twist-3 quark-gluon correlation functions
 - Transversity and linearly polarized gluons
 - Collins(-like) and interference fragmentation functions
- The ability to access many of these at two different center-of-mass energies means we can give strong input on QCD evolution
- When compared to results from SIDIS and e⁺e⁻, we can start to develop a deeper understanding of factorization breaking effects and universality of TMDs

- STAR has the ability to access many observables that are sensitive to lots of different transverse spin related phenomena:
 - Sivers function
 - Twist-3 quark-gluon correlation functions
 - Transversity and linearly polarized gluons
 - Collins(-like) and interference fragmentation functions
- The ability to access many of these at two different center-of-mass energies means we can give strong input on QCD evolution
- When compared to results from SIDIS and e⁺e⁻, we can start to develop a deeper understanding of factorization breaking effects and universality of TMDs
- Many more results will be coming soon from higher statistics protonproton datasets and also from p+A collisions

Looking to the Future

Year	Species	L _{int}	Physics	Observable
2017	pîp (500 GeV)	350 pb⁻¹	Sea quark Sivers Transversity & Collins Gluon linear polarization Gluon + quark twist-3 Gluon FF	W/Z A_N and DY A_{UT} in jets A_{UT} in jets Inclusive jet A_N Hadrons in jets
2021	pîp (500 GeV)	1.1 fb ⁻¹	Sea quark Sivers Transversity & Collins Gluon linear polarization Gluon + quark twist-3 Gluon FF	W/Z A_N and DY A_{UT} in jets A_{UT} in jets Inclusive jet A_N Hadrons in jets
2023	p↑p (200 GeV)	300 pb ⁻¹	Transversity & Collins Gluon linear polarization Gluon + quark twist-3 Gluon FF	A _{UT} in jets A _{UT} in jets Inclusive jet A _N Hadrons in jets
2023	p [↑] Au (200 GeV) p [↑] Al (200 GeV)	1.8 pb ⁻¹ 12.6 pb ⁻¹	A-dependence of TMDs	A _{UT} & hadrons in jets

Backup

Capabilites at RHIC/STAR

- Proton collisions \sqrt{s} = 200 GeV and \sqrt{s} = 500 GeV
- 500 GeV accesses higher jet p_T than 200 GeV
 - $p_T \approx Q$, so 500 GeV accesses lower x with higher gluon content
 - Expect smaller asymmetries for 500 GeV

Current PDF Knowledge

 Valence momentum and helicity PDFs are well constrained

(Limited) Knowledge of Transversity

- Transversity remains wildly unconstrained, even in valence contributions!
- One contributing factor to limited knowledge is because transversity is chiral odd
 - Accessibility highly suppressed in inclusive lepton scattering
- To constrain transversity as well as helicity we need more data across a broad range in x
- Can be accessed if paired with another appropriate chiral odd function
 - Single spin asymmetries!

Phys. Rev. D 93 014009 (2016)