Experimental Results and Future Plans on Spin Physics at STAR

Dutline RHIC and STAR STAR Spin Results STAR Forward Upgrade

Akio Ogawa

Brookhaven National Laboratory

PacificSpin2019, 2019 Aug 27-30, Miyazaki, Japan

The Relativistic Heavy Ion Collider

Au+Au (other light to heavy ions) Polarized p+p d+Au Polarized p + Au/Al

RHIC is a QCD lab

RHIC as a Polarized Proton Collider

World Polarized Data

STAR Detector

Mid Rapidity : Charged particles & EM Calorimeter \rightarrow Jets & WForward Rapidity : EM Calorimeters $\rightarrow \pi^0$ & photon & DY

STAR Spin Program

Mid Rapidity TPC BEMC EEMC	Jet Di-Jet	σ High-x gluon density	
		A _{LL} Gluon Spin	← 1
		A _N Collins	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		A _N IFF	→ ³
	W,Z	$\sigma \overline{d} / \overline{u}$	
		A _L Sea Quark Spin	← [∠]
		A _N Sivers	
Forward Rapidity EEMC FMS	π ⁰ , η, EM-Jet (Photon, DY)	A _{LL} Gluon Spin	3
		A _N Twist-3, Collins, Sivers	
Zero Degree			
Roman-Pot	Proton	Elastic and Diffraction	
RHICf	piO		See RHICf talk

Wide range of physics with longitudinal and transverse polarization (and unpol)

Gluon Spin from A_{LL} : p+p \rightarrow Jet+X @ 200GeV

Gluon Spin from $A_{LL} : p+p \rightarrow Jet+Jet+X$

Phys.Rev. D95, 071103 (2017)

Di-Jet measures narrower range of $x \rightarrow$ shape of $\Delta G(x)$

Gluon Spin from A_{LL} : p+p \rightarrow Jet+Jet+X @ Endcap EMC

Forward jet at EEMC pushes to lower gluon x, with quark at higher x (with higher polarization) 10

Gluon Spin from A₁₁ : Jet & Di-Jet @ 510GeV

DI-JET

0.05

 10^{-3}

10⁻²

10⁻¹

x

INCLUSIVE JET

Inclusive Jet ALL

0.02

0.01

0

-0.01

0

510GeV data provide better accuracy at lower x_T (at same p_T)

olarization scale uncertainty

Parton Diiet Minv [GeV/c²]

W/Z measurement at STAR

W's naturally separate quark flavor \rightarrow rapidity: sea vs. valence quarks

W's are maximally parity violating \rightarrow W's couple only to one parton helicity

$$u\overline{d} \to W^+$$
$$d\overline{u} \to W^-$$

$$\vec{P}_T^W = \vec{P}_T^e + \vec{P}_T^v = -\vec{P}_T^{recoil}$$

W^{+/-} and Z⁰ cross sections

STAR prel. $\sqrt{s} = 510 \text{ GeV}$

Overall uncertainty on luminosity

not shown

8.5%) is

Systematic uncertainty

TMDPDFs [1902.08474]

 $L = 360 \ pb^{-1}$

18

16

14

20

 $p_{\tau}^{Z^0}$ (GeV/c)

22 24

STAR data agree with theoretical prediction which also describe LHC data

2017 data (~350/pb @ 510GeV) will double the statistics of 2011+12+13 data

W^{+/-} and Z⁰ cross section ratios

Consistent with DY result (FNAL E866/906) and PDF fit

Adding EEMC endcap: extends the x reach to 0.06 < x < 0.4 2017 data (~350/pb) data will double the statistics of 2011+12+13 data

Sea quark spin from A_L : W^{+/-}

Significant preference for $\Delta \overline{u} > \Delta \overline{d}$ at 0.06 <x < 0.25 while $\overline{u} < \overline{d}$ for unpolarized PDF

17 Years Ago @ SPIN2002

Theory predictions at $p_T = 1.5 \text{ GeV/c}$

Collins effect Anselmino, et al. PRD 60 (1999) 054027.

Sivers effect

Anselmino, et al. Phys. Lett. B442 (1998) 470.

Twist 3 effect

Qiu and Sterman, Phys. Rev. D59 (1998) 014004.

correlated with quark spin Quark transverse polarization in transversely polarized p

 k_{T} in fragmentation

Transversity * Collins Frag. Func.

k_⊤ of parton in transversely polarized p

> Sign change between DIS vs DY

 $A_{N}(\pi^{0})$

Sivers Effect from W/Z

Phys. Rev. Lett. 116, 132301 (2016) Reconstruct W kinematics using recoil Theory : Phys. Rev. Lett. 103, 172001 Ă ۸ **STAR** p+p 500 GeV (L = 25 pb⁻¹) Å **STAR** p+p 500 GeV (L = 25 pb^{-1}) **STAR** p+p 500 GeV (L = 25 pb^{-1}) 0.8 **0.8**⊢ $0.5 < P_T^{Z^0} < 10 \ GeV/c$ $0.5 < P_T^W < 10 \ GeV/c$ $0.5 < P_T^W < 10 \ GeV/c$ 0.6 0.6 0.4 0.4 0.5 0.2 0.2 Ω -0.2 -0.2 $W^+ \rightarrow I^+ \gamma$ \rightarrow 7⁰ \rightarrow 1⁺ 1 $\mathbf{W} \rightarrow \mathbf{I} \mathbf{v}$ -0.5 -0.4 -0.4run 17 proj. (L=350pb⁻¹, P=55%) -+ run 17 proj. (L=350pb⁻¹, P=55%) run 17 proj. (L=350pb⁻¹, P=55%) – KQ - no TMD evol. -0.6 — KQ - no TMD evol. KQ - no TMD evol. -0.6 **EIKV - TMD evolved EIKV - TMD evolved EIKV - TMD evolved** -**0.8** 3.4% beam pol. uncertainty not shown **-0.8***⊢3.4*% beam pol. uncertainty not shown 3.4% beam pol. uncertainty not shown -0.5 0.5 -0.5 0 0.5 0 0.5 1.5 -1.5 -0.5 0 vW vW ٧^{Z⁰}

> Results show the first hint for Sivers sign-change and small TMD evolution effects in asymmetries

STAR collected x14 more statistics (350/pb) transverse p+p in 2017 statistical error projection shown as black points above

Transversity x Collins from A_{UT} : Jet+ π

STAR Phys. Rev. D 97, 032004 (2018) DMP: PLB 773, 300 (2017) KPRY: PLB 774, 635 (2017)

2017 (510GeV) data factor x14 more statistics

Collins effect vs j_T in z-bins

500 GeV pp results hinted the A_{UT} peak shifts to higher j_{T} as z increases

New preliminary 200 GeV pp results provide confirming evidence

2017 (510GeV) data factor x14 more statistics

Interference Fragmentation Function (IFF)

× Substantial reduction in the uncertainties at the valence x region in global fit to SIDIS/e⁺e⁻ + STAR

Forward $A_N : \pi^0$

Theory predictions at $p_T = 1.5 \text{ GeV/c}$

Collins effect Anselrano, et al. PRD 60 (1999) 054027.

Sivers effect Anselmino, et al. Phys. Lett. B442 (1998) 470.

Twist 3 effect Qiu and Sterman, Phys. Rev. D59 (1998) 014004.

Twist3 Fragmentation effect

Koike Nucl.Phys. A721 (2003) 364-367

Kanazawa, Koike, Metz, Pitonyak PhysRev D.89.111501

Collins & IFF * Transversity at SIDIS, B-factories & RHIC

TMD and Twist3

3 parton correlator

relation

 $-\int d^2k_{\perp} \frac{\left|k_{\perp}^2\right|}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{SIDIS} = T_{q,F}(x,x)$

Sivers effect at at SIDIS & RHIC

p_T dependence of forward $A_N : \pi^0$

Forward A_N : EM-jet vs isolated π^0

Isolated π^0 2 γ -EM-Jets with $m_{\gamma\gamma} < 0.3 \text{ GeV/c}^2$ $Z_{\gamma\gamma} < 0.8$

EM-Jets with no. photons >2

A_N for jettier events are much smaller than isolated π^0

Forward A_N : p+p vs p+Au

Hybrid Approach Yoshitaka Hatta, et al, Phys. Rev. D 95, 014008 (2017)

Initial state effect in p + k_T un-integrated gluon distribution in Au + Final State effect

Both models predicted gluon saturation suppresses A_N by $\sim A^{\gamma_s}$ Suppression of A_N in p \uparrow +A provides sensitivity to Q_s PhysRevD.84.034019, PhysRevD.86.034028

Small to no suppression is observed

Something new (and old?) : $p^{\uparrow}+p \rightarrow p+\pi^{0}+X$

Jet and Dijet: **Positive gluon polarization**

STAR Spin Summary

W : Positive flavor asymmetry in the polarized sea

 $25 < E_{\tau}^{e} < 50 \text{ GeV}$

PRD

66

С

02

11

W

Rel lumi

svst

Jet+ $\pi^{+/-}$: First Collins effect in p + p

η_{e}

(20 19 W -0.5 STAR 2011-2013 BS15 CHE NLO

DSSV14 CHE NLO

DSSV14 RHICBOS

WWW NNPDFpol1.1rw CHE NLO

3.3% beam pol scale uncertai

NNPDFpol1.1 CHE NLO

 $\vec{p} + p \rightarrow W^{\pm} + X \rightarrow e^{\pm} + X$

√s = 510 GeV

π + π : Transversity * IFF

A_N Direct Photon and DY from 2015/17 data being analyzed

 A_L

0.5

$\pi^0 A_N : p_T dep, Jet/Isolated, pA$

26

STAR Forward Upgrade

HCAL Prototype @ STAR

STGC Prototype @ STAR

Replace FMS with a compact Ecal and add Hcal + Tracking

Small scale system test @ run19

Project is fully approved and funded

On schedule for first data taking with 500 GeV polarized pp in fall 2021

A PHENIX Ecal super sector being modified @ STAR

STAR Physics program 2021~ (after BES2)

Forward-rapidity 2.8<n<4.2 Mid-rapidity $-1.5 < \eta < 1.5$ p+p & p+A p+p & p+A **A+A** A+ABeam: Beam: Beam: Beam: 500 GeV: p+p 500 GeV: p+p Full Energy AuAu Full Energy AuAu 200 GeV: p+p and p+A 200 GeV: p+p and p+A Physics Topics: **Physics Topics: Physics Topics: Physics Topics:** a deep look into the Temperature Improve statistical properties of the QGP: dependence of TMD measurements at precision γ & e+e- pairs viscosity through high x> TMD measurements, chiral symmetry flow harmonics up transversity \rightarrow tensor i.e. Collins, Sivers, ... charge restoration to n~4 \succ Access s & Δ s through Longitudinal temperature and Improve statistical Kaons in jets lifetime of hot, dense decorrelation up to precision for Sivers medium n~4 through DY Measurement of GPD E_a Global Lambda through UPC J/Ψ • $\Delta q(x,Q2)$ at low x Hypertriton Lifetime Polarization First access to Wigner Measurement through Di-jets functions through di- \rightarrow strong rapidity dependence jets in UPC Precision measurements Gluon PDFs for nuclei Gluon and guark vacuum of direct photon yields \succ R_{pA} for direct photons & fragmentation and v_n DY Gluon and guark Test of Saturation fragmentation in nuclear predictions through medium di-hadrons, y-Jets Nuclear dependence of Collins FF

Physics with STAR forward upgrade

DY: Sivers sign change/TMD evolution

Transversity * Collins/IFF at forward

UPC J/psi for GPD E_g

Forward Jet A_{LL} : ΔG at small x

0.0015

0.001

0.000

-0.0005

-0.001

-0.0015

0.005

-0.005

Backup

A_N for different # photons in EM-Jets

- 1-photon events, which include a large π⁰ contribution in this analysis, are similar to 2photon events
- Three-photon jet-like events have a clear nonzero asymmetry, but substantially smaller than that for isolated π⁰'s
- A_N decreases as the event complexity increases (i.e., the "jettiness"
- A_N for #photons >5 is similar to that for #photons = 5

Asymmetries for jettier events are much smaller

This is a pion asymmetry, in the scattering plane of the proton