

Nuclear modification factor of inclusive charged particles in Au+Au collisions with the STAR experiment.

Alisher Aitbayev^{1,2} (for the STAR collaboration)

 1 Joint Institute for Nuclear Research, Dubna - Russia, $^2 {\rm The}$ Institute of Nuclear Physics, Almaty - Kazakhstan

July 3, 2025

Alie	hor	A 1 ± 1	221	
	II CI		Jay	

Phases of QCD Matter

Baryon Chemical Potential μ_{B}

🗷 QCD Phase Diagram

- Cross-over transition expected at low baryon chemical potential (μ_{β})
- First-order transition expected at high μ_B
- Critical point is the end point of the first order phase transition

✤ Beam Energy Scan (BES)

- Explore the QCD matter by colliding gold ions at different energies - and search for the potential QCD critical point
- Seeking to map onset of deconfinement, and the predicted QCD critical point

Heavy Ion Collisions

the collision, (2) formation of dense, hydro dynamically expanding matter at around 1-2 fm/c after the collision, (3) hydrodynamic expansion of the dense core, surrounded by hadronic corona (the particles on the plot represent individual hadrons), (4) final state hadronic interactions and decoupling of the fireball. (Image from an animation by MADAI)

Э

Sac

Solenoidal Tracker at RHIC (STAR)

STAR detector and its various detector subsystems

- ★ Time Projection Chamber (TPC) Measures charged particle momentum with track curvature under B-field. Identifies particle with energy loss per unit length (dE/dx). TPC: |η| < 1</p>
- Time of Flight (TOF)
 Extends momentum range for particle identification.
 Pile-up rejection.
 TOF: |η| < 1
- ← Detector Modernization (2018+) EPD: $2.1 < |\eta| < 5.1$ iTPC: $|\eta| < 1.5$ eTOF (2019+): $-1.6 < \eta < -1$

Image: A math a math

 \exists

Sac

Motivation

Comparison of statistics between *BES-I* (2010-2017) and *BES-II* (2019-2021)

R_{CP} of identified hadrons up to $p_T = 5 GeV/c$

The top three lines represent statistical error bands. For better visibility, the error ranges have been scaled by 10 (for 7.7 GeV), 100 (for 11.5 GeV), 1000 (for 19.6 GeV)

Although the BES-I RCP results hint at the disappearance of the QGP signature, their certainty remains limited due to the constraints of 3-4 GeV/c for inclusive hadrons and 2-3 GeV/c for identified hadrons. The anticipated extension of pT capabilities in BES-II holds paramount importance in establishing unequivocal determinations regarding QGP formation at distinct collision energies.

Alisher Aitbayev

Centrality definition

Alisher Aitbayev

Spectra for centrality classes

Transverse momentum distribution of inclusive charged particles for collision energy of 19.6 GeV (left) and 27 GeV (right). Each spectrum corresponds to a certain centrality class and is multiplied by coefficient from $1 - 10^5$ for visibility. The vertical error bars correspond to statistical uncertainties and the colored boxes to the systematic uncertainties.

Nuclear modification factor

$${\cal R}_{CP} = rac{\langle N_{coll}
angle_{Peripheral}}{\langle N_{coll}
angle_{Central}} rac{Spectra_{0-5\%}}{Spectra_{60-80\%}}$$

- Low p_T (< 2 GeV/c): Strong R_{CP} growth at both energies
- ► 27 GeV:
 - ► Clear plateau (2-6.5 GeV/c) → QGP formation
 - Strong suppression (> 6.5 GeV/c) → parton energy loss
- ▶ 19.6 GeV:
 - Extended R_{CP} growth (up to 5 GeV/c)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A

► Weaker suppression → hadronic dominance

R_{CP} with compare UrQMD and smash+vHLLe

Alisher Aitbayev

STAR collaboration

10 / 14

Conclusion

Key Achievements:

- Measured transverse momentum spectra of inclusive charged particles at $\sqrt{s_{NN}} = 19.6$ and 27 GeV
- ► Calculated nuclear modification factors (*R_{CP}*) for both energies
- Performed systematic comparison with UrQMD and SMASH+vHLLE models

Main Findings:

- Excellent consistency between BES-I and BES-II data at 19.6 GeV
- Extended p_T reach for 27 GeV analysis
- ▶ UrQMD describes soft sector ($p_T < 2 \text{ GeV}/c$) but fails in hard region
- Hydrodynamic model (SMASH+vHLLE) underestimates data by order of magnitude

Thank You!

4 日 > 4 同 > 4 回 > 4 回 >

Sac

Back up

Alisher Aitbayey	STAR
Anoner Altouyev	J J A

STAR collaboration

12 / 14

≡ ∽ < (~

Spectra in URQMD model

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

	_	
AUSI		IVEV
,		

Nuclear modification factor in URQMD model

