Global polarization of Λ and Ξ hyperons in Au+Au collisions in the STAR experiment

E. V. Alpatov (for the STAR Collaboration)^{1,*}

¹National Research Nuclear University MEPhI

Global polarization of Λ hyperons appearing in non-central heavy-ion collisions was measured by the STAR experiment at RHIC for Au+Au collisions with $\sqrt{s_{NN}} = 3$ -200 GeV and at the LHC for Pb+Pb collisions with $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV. Global polarization reflects its vortical nature of quark-gluon matter at its initial evolution stage.

Global polarization of multistrange hyperons, such as Ξ , can provide new information on hydrodynamic description of the system and its vorticity nature. In these proceedings, we will report results of Ξ and Λ global polarization for Au+Au collisions at $\sqrt{s_{NN}} = 19.6, 27$, and 54.4 GeV.

I. INTRODUCTION

Relativistic hydrodynamics predicts that quark-gluon plasma, hot-dense matter produced
7 in relativistic heavy-ion collisions, possess large vorticity in non-central collisions. It man8 ifests itself in polarization of produced particles along the direction of vorticity. One can
9 obtain polarization of hyperons from its parity violating weak decay properties [1, 2].

In the hyperon decays, the angular distribution of daughter baryon in the parent hyperon
 rest frame is given by:

$$\frac{dN}{d\cos\theta^*} \propto 1 + \alpha_H P_H \cos\theta^*,\tag{1}$$

¹² α_H is the hyperon decay parameter, P_H is the hyperon polarization, $\cos \theta^*$ is the angle be-¹³ tween the polarization vector and daughter baryon momentum in the hyperon rest frame [3]. ¹⁴ Global polarization can be measured in respect to reaction plane (which is defined by the ¹⁵ beam direction and impact parameter vector):

3

4

5

^{*} egroker1@gmail.com

$$P_H = \frac{8}{\pi \alpha_H} \frac{\left\langle \sin\left(\Psi_1^{obs} - \phi_{daughter}^*\right) \right\rangle}{Res(\Psi_1)},\tag{2}$$

¹⁶ where $\phi^*_{daughter}$ is the azimuthal angle of the daughter baryon in the parent hyperon rest ¹⁷ frame, $Res(\Psi_1)$ is event plane resolution. Decay parameter values are $\alpha_{\Lambda} = 0.732 \pm 0.014$, ¹⁸ $\alpha_{\bar{\Lambda}} = -0.758 \pm 0.010$, $\alpha_{\Xi^-} = -\alpha_{\bar{\Xi}^+} = -0.401 \pm 0.010$ [4].

¹⁹ Global polarization of Λ hyperons was observed by the STAR for collision energies ²⁰ $\sqrt{s_{NN}} = 3 - 200 \text{ GeV} [5-8]$ and was described successfully by transport and hydrodynamic ²¹ model calculations. Measurements of multistrange hyperon's global polarization could pos-²² sibly achieve goal of understanding the nature of vorticity [9].

²³ A hyperons are reconstructed via its decay $\Lambda \rightarrow p + \pi^-$, and for Ξ hyperons decay ²⁴ channel $\Xi^- \rightarrow \Lambda + \pi^-$ is analyzed. This cascade decay provides opportunity to measure ²⁵ its global polarization in two separate ways. One can use Equation 2 directly measuring ²⁶ angle of daughter Λ decaying from Ξ . Additionally, Ξ global polarization could transfer into ²⁷ its daughter Λ polarization with transfer factor $C_{\Xi^-\Lambda} = 0.932$ and global polarization of Ξ ²⁸ hyperons could be measured by examining its daughter Λ global polarization [10–12].

In this proceedings we report on the measurements of the global polarization of $\Xi^- + \bar{\Xi}^+$ ³⁰ hyperons in Au+Au collisions at $\sqrt{s_{NN}} = 27$, 54.4, and 200 GeV and compare them to those ³¹ of $\Lambda + \bar{\Lambda}$.

32

II. DATA ANALYSIS

³³ Data of Au+Au collisions at $\sqrt{s_{NN}} = 27$ and 54.4 GeV collected by STAR experiment ³⁴ was used for this analysis. STAR features cylindrical geometry detector for high-multiplicity ³⁵ collisions [13]. Events that passed minimum-bias trigger, with collision vertex within 70 cm ³⁶ along the beam axis from the center of Time-Projection Chamber (TPC) [14] and with ³⁷ vertex position within 2 cm from the beam line in the transverse plane were analyzed.

To reconstruct hyperons one needs daughter charged particle tracks that were measured ³⁹ in TPC within a pseudorapidity range $|\eta| < 1$ and with full azimuthal acceptance. Tracks ⁴⁰ with momentum above 0.15 GeV/*c* were identified via ionization energy losses, dE/dx, and ⁴¹ by their squared mass obtained by TOF (Time-Of-Flight) [15]. Identified protons and pions ⁴² were used for hyperon reconstruction.

⁴³ Λ hyperons were reconstructed via topology of its decay $\Lambda \to p + \pi^- (\bar{\Lambda} \to \bar{p} + \pi^+)$, and

⁴⁴ after Λ hyperons were obtained, the same procedure was performed for decays $\Xi^- \to \Lambda + \pi$ ⁴⁵ $(\bar{\Xi}^+ \to \bar{\Lambda} + \pi^+)$. Hyperon reconstruction was performed with KFParticleFinder package [16]. ⁴⁶ The collision centrality was determined based on the measured multiplicity of charged ⁴⁷ tracks within midrapidity region. Centrality and trigger efficiency were obtained by fitting ⁴⁸ it to a Monte Carlo Glauber simulation.

For event plane reconstruction, EPD [17] (2.1 < η < 5.1) and BBC [18] (3.3 < η < 5.1) ⁵⁰ were used separately for $\sqrt{s_{NN}} = 27$ GeV, ZDC [19] ($\eta > 5.2$) and BBC for $\sqrt{s_{NN}} =$ ⁵¹ 54.4 GeV collision energy. The first-order event plane, a proxy for reaction plane, was ⁵² reconstructed using the spectator particles.

Global polarization measurements include correction for event plane resolution. Resolution was calculated via two-subevent method, with use of East (forward rapidity) and West (backward rapidity) detectors in combination.

Following Equation 2, $\langle \sin(\Psi_1 - \phi^*_{daughter}) \rangle$ should be measured. To differentiate signal for real hyperons from combinatoric pairs of its daughter candidates, so-called "event-plane method" was used. This method consists in measuring number of hyperons as a function for $(\Psi_1 - \phi^*_{daughter})$, and then fitting it with Fourier function to obtain the sine coefficient $\langle \sin(\Psi_1 - \phi^*_{daughter}) \rangle$.

61

III. RESULTS

Figure 1 presents global polarization of $\Lambda + \bar{\Lambda}$ and $\Xi^- + \bar{\Xi}^+$ hyperons as a function of collision energy for the centrality 20-50% (20-80% for $\Xi^- + \bar{\Xi}^+$ at $\sqrt{s_{NN}} = 200$ GeV due to smaller signal). Results of this analysis are shown together with $\sqrt{s_{NN}} = 7.7-200$ GeV Λ global polarization results and preliminary results for new data at $\sqrt{s_{NN}} = 27$ and 54.4 GeV and the first $\sqrt{s_{NN}} = 200$ GeV study of Ξ global polarization. Theoretical calculations of obtained from AMPT model [20] are shown together with the experimental results.

⁶⁸ Global polarization was measured for Ξ hyperons directly via the angle of daughter Λ ⁶⁹ and via its daughter Λ decays considering the polarization transfer. Both measurements are ⁷⁰ consistent within large uncertainties.

Experimental trend for Ξ global polarization is consistent with AMPT calculations. ⁷² Within uncertainties it is also consistent with Λ global polarization which could indicate ⁷³ the same nature of this phenomena for both particle species as expected.

FIG. 1. Collision energy dependence of global polarization of hyperons in Au+Au collisions.

- ⁷⁴ [1] Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. **94**, 102301 (2005).
- ⁷⁵ [2] S. A. Voloshin, (2004), arXiv:nucl-th/0410089 [nucl-th].
- ⁷⁶ [3] S. A. Voloshin and T. Niida, Phys. Rev. C **94**, 021901 (2016).
- 77 [4] P. A. Zyla *et al.* (Particle Data Group), Prog. Theor. and Exp. Phys. 2020
 78 (2020), 10.1093/ptep/ptaa104, 083C01, https://academic.oup.com/ptep/article 79 pdf/2020/8/083C01/34673722/ptaa104.pdf.
- 80 [5] B. I. Abelev and others., Phys. Rev. C 76 (2007), 10.1103/physrevc.76.024915.
- ⁸¹ [6] L. Adamczyk and et al., Nature **548**, 62–65 (2017).
- ⁸² [7] M. S. Abdallah *et al.* (STAR Collaboration), Phys. Rev. C **104**, L061901 (2021).
- ⁸³ [8] L. Adamczyk and et al., Phys. Rev. C 98 (2018), 10.1103/physrevc.98.014910.
- ⁸⁴ [9] J. Adam and et al. (STAR Collaboration), Phys. Rev. Lett. **126**, 162301 (2021).
- ⁸⁵ [10] T. D. Lee and C. N. Yang, Phys. Rev. **108**, 1645 (1957).
- ⁸⁶ [11] M. Huang *et al.* (HyperCP), Phys. Rev. Lett. **93**, 011802 (2004).
- 87 [12] K. B. Luk et al., Phys. Rev. Lett. 85, 4860–4863 (2000).
- ⁸⁸ [13] M. Anerella *et al.*, Nucl. Instrum. Methods Phys. Res.Sect. A **499**, 280 (2003).
- ⁸⁹ [14] M. Anderson *et al.*, Nucl. Instrum. Methods Phys. Res. Sect. A **499**, 659–678 (2003).
- 90 [15] W. Llope, Nucl. Instrum. Methods Phys. Res. Sect. A 661, S110 (2012), x. Workshop on
- ⁹¹ Resistive Plate Chambers and Related Detectors (RPC 2010).
- ⁹² [16] Z. Maxim, Ph.D. thesis, Johann Wolfgang Goethe-367 Universitat (2016).
- 93 [17] J. Adams et al., Nucl. Instrum. Methods Phys. Res. Sect. A 968, 163970 (2020).
- 94 [18] C. A. Whitten (STAR), AIP Conf. Proc. 980, 390 (2008).
- ⁹⁵ [19] Y.-F. Xu, J.-H. Chen, Y.-G. Ma, A.-H. Tang, Z.-B. Xu, and Y.-H. Zhu, Nucl. Sci. Tech. 27,
 ⁹⁶ 126 (2016).
- 97 [20] D.-X. Wei, W.-T. Deng, and X.-G. Huang, Phys. Rev. C 99, 014905 (2019).